DOI QR코드

DOI QR Code

Optimal flammability and thermal buckling resistance of eco-friendly abaca fiber/ polypropylene/egg shell powder/halloysite nanotubes composites

  • Saeed Kamarian (Department of Mechanical Engineering, Changwon National University) ;
  • Reza Barbaz-Isfahani (Department of Mechanical Engineering, Amirkabir University of Technology) ;
  • Thanh Mai Nguyen Tran (Department of Mechanical Engineering, Changwon National University) ;
  • Jung-Il Song (Department of Mechanical Engineering, Changwon National University)
  • Received : 2023.05.01
  • Accepted : 2023.07.31
  • Published : 2024.02.25

Abstract

Upon direct/indirect exposure to flame or heat, composite structures may burn or thermally buckle. This issue becomes more important in the natural fiber-based composite structures with higher flammability and lower mechanical properties. The main goal of the present study was to obtain an optimal eco-friendly composite system with low flammability and high thermal buckling resistance. The studied composite consisted of polypropylene (PP) and short abaca fiber (AF) with eggshell powder (ESP) and halloysite clay nanotubes (HNTs) additives. An optimal base composite, consisting of 30 wt.% AF and 70 wt.% PP, abbreviated as OAP, was initially introduced based on burning rate (BR) and the Young's modulus determined by horizontal burning test (HBT) and tensile test, respectively. The effects of adding ESP to the base composite were then investigated with the same experimental tests. The results indicated that though the BR significantly decreased with the increase of ESP content up to 6 wt.%, it had a very destructive influence on the stiffness of the composite. To compensate for the damaging effect of ESP, small amount of HNT was used. The performance of OAP composite with 6 wt.% ESP and 3 wt.% HNT (OAPEH) was explored by conducting HBT, cone calorimeter test (CCT) and tensile test. The experimental results indicated a 9~23 % reduction in almost all flammability parameters such as heat release rate (HRR), total heat released (THR), maximum average rate of heat emission (MARHE), total smoke released (TSR), total smoke production (TSP), and mass loss (ML) during combustion. Furthermore, the combination of 6 wt.% ESP and 3 wt.% HNT reduced the stiffness of OAP to an insignificant amount by maximum 3%. Moreover, the char residue analysis revealed the distinct differences in the formation of char between AF/PP and AF/PP/ESP/HNT composites. Afterward, dilatometry test was carried out to examine the coefficient of thermal expansion (CTE) of OAP and OAPEH samples. The obtained results showed that the CTE of OAPEH composite was about 18% less than that of OAP. Finally, a theoretical model was used based on first-order shear deformation theory (FSDT) to predict the critical bucking temperatures of the OAP and OAPEH composite plates. It was shown that in the absence of mechanical load, the critical buckling temperatures of OAPEH composite plates were higher than those of OAP composites, such that the difference between the buckling temperatures increased with the increase of thickness. On the contrary, the positive effect of CTE reduction on the buckling temperature decreased by raising the axial compressive mechanical load on the composite plates which can be assigned to the reduction of stiffness after the incorporation of ESP. The results of present study generally stated that a suitable combination of AF, PP, ESP, and HNT can result in a relatively optimal and environmentally friendly composite with proper flame and thermal buckling resistance with no significant decline in the stiffness.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2018R1A6A1A03024509)

References

  1. Balan, G.S., Krishnan, A.M., Saravanavel, S. and Ravichandran, M. (2020), "Investigation of hardness characteristics of waste plastics and egg shell powder reinforced polymer composite by stirring route", Mater. Today Pr., 33, 4090-4093. https://doi.org/10.1016/j.matpr.2020.06.545.
  2. Barba, B.J.D., Madrid, J.F. and Penaloza Jr, D.P. (2020), "A review of abaca fiber-reinforced polymer composites: Different modes of preparation and their applications", J. Chilean Chem. Soc., 65(3), 4919-4924. http://doi.org/10.4067/s0717-97072020000204919
  3. Behdinan, K. and Moradi-Dastjerdi, R. (2022), "Thermal buckling resistance of a lightweight lead-free piezoelectric nanocomposite sandwich plate", Adv. Nano Res., 12(6), 593-603. https://doi.org/10.12989/anr.2022.12.6.593.
  4. Busico, V. and Cipullo, R. (2001), "Microstructure of polypropylene", Prog. Polym. Sci., 26(3), 443-533. https://doi.org/10.1177/0892705711428659.
  5. Carrera, E., Fazzolari, F.A. and Cinefra, M. (2016), Thermal Stress Analysis of Composite Beams, Plates and Shells: Computational Modelling and Applications, Academic Press
  6. Chalapathi, K.V., Song, J.I. and Prabhakar, M. (2022), "Impact of surface treatments and hybrid flame retardants on flammability, and thermal performance of bamboo fabric composites", J. Natural Fibers, 19(6), 2129-2139. https://doi.org/10.1080/15440478.2020.1798849.
  7. Dai, H. and Safarpour, H. (2021), "Frequency and thermal buckling information of laminated composite doubly curved open nanoshell", Adv. Nano Res., 10(1), 1-14.
  8. Deng, S., Zhang, J., Ye, L. and Wu, J. (2008), "Toughening epoxies with halloysite nanotubes", Polymer, 49(23), 5119- 5127. https://doi.org/10.1016/j.polymer.2008.09.027.
  9. Eslami, M. (2010), Thermo-Mechanical Buckling of Composite Plates And Shells, Amirkabir University Press, Tehran.
  10. Jena, D.K. and Sahoo, P.K. (2019), "New strategies for the construction of eggshell powder reinforced starch based fire hazard suppression biomaterials with tailorable thermal, mechanical and oxygen barrier properties", Int. J. Biol. Macromol., 140(496-504). https://doi.org/10.1016/j.ijbiomac.2019.08.156.
  11. Jirimali, H.D., Chaudhari, B.C., Khanderay, J.C., Joshi, S.A., Singh, V., Patil, A.M. and Gite, V.V. (2018), "Waste eggshell-derived calcium oxide and nanohydroxyapatite biomaterials for the preparation of LLDPE polymer nanocomposite and their thermomechanical study", Polym. Plast. Technol. Eng., 57(8), 804-811. https://doi.org/10.1080/03602559.2017.1354221.
  12. Kamarian, S., Shakeri, M. and Yas, M.H. (2017), "Thermal buckling optimisation of composite plates using firefly algorithm", J. Experim. Theo. Artif. Intell., 29(4), 787-794. https://doi.org/10.1080/0952813X.2016.1259267.
  13. Kamarian, S. and Song, J.I. (2022), "Review of literature on eco-friendly sandwich structures made of non-wood cellulose fibers", J. Sandw. Struct. Mater., 24(3), 1653-1705. https://doi.org/10.1177%2F10996362211062372. https://doi.org/10.1177%2F10996362211062372
  14. Kamarian, S., Yu, R. and Song, J.I. (2022), "Synergistic effects of halloysite nanotubes with metal and phosphorus additives on the optimal design of eco-friendly sandwich panels with maximum flame resistance and minimum weight", Nanotechnol. Rev., 11(1), 252-265. https://doi.org/10.1515/ntrev-2022-0014.
  15. Kang, D.J., Pal, K., Park, S.J., Bang, D.S. and Kim, J.K. (2010), "Effect of eggshell and silk fibroin on styrene-ethylene/butylene-styrene as bio-filler", Mater. Des., 31(4), 2216-2219. https://doi.org/10.1016/j.matdes.2009.10.033.
  16. Kant, T. and Babu, C.S. (2000), "Thermal buckling analysis of skew fibre-reinforced composite and sandwich plates using shear deformable finite element models", Compos. Struct., 49(1), 77-85. https://doi.org/10.1016/S0263-8223(99)00127-0
  17. Karunakaran, S., Majid, D. and Tawil, M.M. (2016), "Flammability of self-extinguishing kenaf/ABS nanoclays composite for aircraft secondary structure", Proceedings of the IOP Conference Series: Materials Science and Engineering, 152(1), 012068, IOP Publishing.
  18. Lee, D.W., Kim, S., Kim, B.S. and Song, J.I. (2013), "Tensile and fire retardant properties of nanoclay reinforced Abaca/Polypropylene composite", Proceedings of the 2013 International Conference on Aerospace Science & Engineering (ICASE), IEEE, 1-5.
  19. Li, X. and Yu, K. (2015), "Vibration and acoustic responses of composite and sandwich panels under thermal environment", Compos. Struct., 131(1040-1049). https://doi.org/10.1016/j.compstruct.2015.06.037.
  20. Li, Z., Shah, A.R., Prabhakar, M. and Song, J.-i. (2017), "Effect of inorganic fillers and ammonium polyphosphate on the flammability, thermal stability, and mechanical properties of abaca-fabric/vinyl ester composites", Fibers Polym., 18(3), 555-562. https://doi.org/10.1007/s12221-017-6859-7.
  21. Liu, K., Takagi, H. and Yang, Z. (2013), "Dependence of tensile properties of abaca fiber fragments and its unidirectional composites on the fragment height in the fiber stem", Compos. Part A Appl. Sci., 45, 14-22. https://doi.org/10.1016/j.compositesa.2012.09.006.
  22. Liu, M., Guo, B., Zou, Q., Du, M. and Jia, D. (2008), "Interactions between halloysite nanotubes and 2, 5-bis (2-benzoxazolyl) thiophene and their effects on reinforcement of polypropylene/halloysite nanocomposites", Nanotechnology, 19(20), 205709. https://doi.org/10.1088/0957-4484/19/20/205709.
  23. Liu, M., Wu, C., Jiao, Y., Xiong, S. and Zhou, C. (2013), "Chitosan-halloysite nanotubes nanocomposite scaffolds for tissue engineering", J. Mater. Chem. B, 1(15), 2078-2089. https://doi.org/10.1039/C3TB20084A.
  24. Maddah, H.A. (2016), "Polypropylene as a promising plastic: A review", Am. J. Polym. Sci, 6(1), 1-11. https://doi.org/10.5923/j.ajps.20160601.01.
  25. Madsen, B. and Gamstedt, E.K. (2013), "Wood versus plant fibers: similarities and differences in composite applications", Adv. Mater. Sci. Eng., 2013. https://doi.org/10.1155/2013/564346.
  26. Mai Nguyen Tran, T., Mn, P., Lee, D.W., Cabo, M., Jr and Song, J.I. (2021), "Polypropylene/abaca fiber eco-composites: Influence of bio-waste additive on flame retardancy and mechanical properties", Polym. Compos., 42(3), 1356-1370. https://doi.org/10.1002/pc.25906.
  27. Manickavasagam, V., Vijaya Ramnath, B., Elanchezhian, C., Vignesh, V., Vijai Rahul, V., Sathya Narayanan, S. and Tamilselvan, V. (2014), "Investigation on compression and hardness properties of abaca and manila hybrid composite", Appl. Mech. Mater., 680, 23-26.
  28. Massaro, M., Lazzara, G., Milioto, S., Noto, R. and Riela, S. (2017), "Covalently modified halloysite clay nanotubes: synthesis, properties, biological and medical applications", J. Mater. Chem. B, 5(16), 2867-2882. https://doi.org/10.1039/C7TB00316A.
  29. Mouritz, A.P. and Gibson, A.G. (2007), Fire properties of polymer composite materials, Springer Science & Business Media.
  30. Naumenko, E.A., Guryanov, I.D., Yendluri, R., Lvov, Y.M. and Fakhrullin, R.F. (2016), "Clay nanotube-biopolymer composite scaffolds for tissue engineering", Nanoscale, 8(13), 7257-7271. https://doi.org/10.1039/C6NR00641H.
  31. Ochi, S. (2006), "Development of high strength biodegradable composites using Manila hemp fiber and starch-based biodegradable resin", Compos. Part A Appl. Sci., 37(11), 1879-1883. https://doi.org/10.1016/j.compositesa.2005.12.019.
  32. Qiu, J., Jiang, L., Orabi, M.A., Usmani, A. and Li, G. (2022), "A computational approach for modelling composite slabs in fire within OpenSees framework", Eng. Struct., 255(113909). https://doi.org/10.1016/j.engstruct.2022.113909.
  33. Reddy, J.N. (2003), Mechanics of laminated composite plates and shells: theory and analysis, CRC press.
  34. Renner, J.S., Mensah, R.A., Jiang, L., Xu, Q., Das, O. and Berto, F. (2021), "Fire behavior of wood-based composite materials", Polymers, 13(24), 4352. https://doi.org/10.3390/polym13244352.
  35. Santos, A.C., Ferreira, C., Veiga, F., Ribeiro, A.J., Panchal, A., Lvov, Y. and Agarwal, A. (2018), "Halloysite clay nanotubes for life sciences applications: From drug encapsulation to bioscaffold", Adv. Colloid Interf. Sci., 257, 58-70. https://doi.org/10.1016/j.cis.2018.05.007.
  36. Shaik, M.S. and Subramanian, H.S. (2021), "An Experimental Investigation on Low-velocity Impact Response of Abaca/Epoxy Bio-composite", J. Natural Fibers, 1-16. https://doi.org/10.1080/15440478.2021.1941485.
  37. Shan, X. and Huang, A. (2022), "Intelligent simulation of the thermal buckling characteristics of a tapered functionally graded porosity-dependent rectangular small-scale beam", Adv. Nano Res., 12(3), 281-290. https://doi.org/10.12989/anr.2022.12.3.281
  38. Shubhra, Q.T., Alam, A.M. and Quaiyyum, M.A. (2013), "Mechanical properties of polypropylene composites: A review", J. Thermoplast. Compos. Mater., 26(3), 362-391. https://doi.org/10.1016/S0079-6700(00)00046-0.
  39. Sun, R., Fang, J., Goodwin, A., Lawther, J. and Bolton, A. (1998), "Isolation and characterization of polysaccharides from abaca fiber", J. Agric. Food Chem., 46(7), 2817-2822. https://pubs.acs.org/doi/abs/10.1021/jf9710894.
  40. Tsai, W.T., Yang, J.M., Lai, C.W., Cheng, Y.H., Lin, C.C. and Yeh, C.W. (2006), "Characterization and adsorption properties of eggshells and eggshell membrane", Bioresour. Technol., 97(3), 488-493. https://doi.org/10.1016/j.biortech.2005.02.050.
  41. Vasquez, J.Z. and Diaz, L.J.L. (2017), "Unidirectional abaca fiber reinforced thermoplastic starch composite", Mater. Sci. Forum, 894, 56-61.
  42. Vijaya Ramnath, B., Manickavasagam, V., Elanchezhian, C., Santhosh Shankar, A., Sundarrajan, R., Vickneshwaran, S. and Pithchai Pandian, S. (2014), "Investigation on flexural and impact properties of abaca and Manila hybrid composite", Adv. Mater. Res., 1051, 102-106.
  43. Vijayalakshmi, K., Neeraja, C.Y., Kavitha, A. and Hayavadana, J. (2014), "Abaca fibre", Transact. Eng. Sci., 2(9), 16-19
  44. Vilaseca, F., Valadez-Gonzalez, A., Herrera-Franco, P.J., Pelach, M.A ., Lopez, J.P. and Mutje, P. (2010), "Biocomposites from abaca strands and polypropylene. Part I: Evaluation of the tensile properties", Bioresour. Technol., 101(1), 387-395.
  45. Xu, Z., Chu, Z., Yan, L., Chen, H., Jia, H. and Tang, W. (2019), "Effect of chicken eggshell on the flame-retardant and smoke suppression properties of an epoxy-based traditional APP-PER-MEL system", Polym. Compos., 40(7), 2712-2723. https://doi.org/10.1002/pc.25077.
  46. Zhang, Z., Wang, C., Huang, G., Liu, H. and Zhao, W. (2019), "Thermal decomposition characteristic parameters for the outer material of composite hydrogen storage tank by cone calorimeter", J. Therm. Anal. Calorim., 138, 1299-1310. https://doi.org/10.1007/s10973-019-08189-6.