• Title/Summary/Keyword: Maximum queue length

Search Result 27, Processing Time 0.022 seconds

The Analysis of Priority Output Queuing Model by Short Bus Contention Method (Short Bus contention 방식의 Priority Output Queuing Model의 분석)

  • Jeong, Yong-Ju
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.2
    • /
    • pp.459-466
    • /
    • 1999
  • I broadband ISDN every packet will show different result if it would be processed according to its usage by the server. That is, normal data won't show big differences if they would be processed at normal speed. But it will improve the quality of service to process some kinds of data - for example real time video or voice type data or some data for a bid to by something through the internet - more fast than the normal type data. solution for this problem was suggested - priority packets. But the analyses of them are under way. Son in this paper a switching system for an output queuing model in a single server was assumed and some packets were given priorities and analysed. And correlation, simulating real life situation, was given too. These packets were analysed through three cases, first packets having no correlation, second packets having only correlation and finally packets having priority three cases, first packets having no correlation, second packets having only correlation and finally packets having priority and correlation. The result showed that correlation doesn't affect the mean delay time and the high priority packets have improved mean delay time regardless of the arrival rate. Those packets were assumed to be fixed-sized like ATM fixed-sized cell and the contention strategy was assumed to be short bus contention method for the output queue, and the mean delay length and the maximum 버퍼 length not to lose any packets were analysed.

  • PDF

Adaptive Packet Scheduling Scheme to Support Real-time Traffic in WLAN Mesh Networks

  • Zhu, Rongb;Qin, Yingying;Lai, Chin-Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1492-1512
    • /
    • 2011
  • Due to multiple hops, mobility and time-varying channel, supporting delay sensitive real-time traffic in wireless local area network-based (WLAN) mesh networks is a challenging task. In particular for real-time traffic subject to medium access control (MAC) layer control overhead, such as preamble, carrier sense waiting time and the random backoff period, the performance of real-time flows will be degraded greatly. In order to support real-time traffic, an efficient adaptive packet scheduling (APS) scheme is proposed, which aims to improve the system performance by guaranteeing inter-class, intra-class service differentiation and adaptively adjusting the packet length. APS classifies incoming packets by the IEEE 802.11e access class and then queued into a suitable buffer queue. APS employs strict priority service discipline for resource allocation among different service classes to achieve inter-class fairness. By estimating the received signal to interference plus noise ratio (SINR) per bit and current link condition, APS is able to calculate the optimized packet length with bi-dimensional markov MAC model to improve system performance. To achieve the fairness of intra-class, APS also takes maximum tolerable packet delay, transmission requests, and average allocation transmission into consideration to allocate transmission opportunity to the corresponding traffic. Detailed simulation results and comparison with IEEE 802.11e enhanced distributed channel access (EDCA) scheme show that the proposed APS scheme is able to effectively provide inter-class and intra-class differentiate services and improve QoS for real-time traffic in terms of throughput, end-to-end delay, packet loss rate and fairness.

Perfomance Analysis for the IPC Interface Part in a Distributed ATM Switching Control System (분산 ATM 교환제어시스템에서 프로세서간 통신 정합부에 대한 성능 분석)

  • Yeo, Hwan-Geun;Song, Kwang-Suk;Ro, Soong-Hwan;Ki, Jang-Geun
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.6
    • /
    • pp.25-35
    • /
    • 1998
  • The control system architecture in switching systems have undergone numerous changes to provide various call processing capability needed in telecommunication services. During call processing in a distributed switching control environment, the delay effect due to communication among main processors or peripheral controllers is one of the limiting factors which affect the system performance. In this paper, we propose a performance model for an IPC(Inter Processor Communication) interface hardware block which is required on the ATM cell-based message processing in a distributed ATM exchange system, and analyze the primary causes which affect the processor performance through the simulation. Consequently, It can be shown that the local CPU of the several components(resources) related to the IPC scheme is a bottleneck factor in achieving the maximum system performance from the simulation results, such as the utilization of each processing component according to the change of the input message rate, and the queue length and processing delay according to input message rate. And we also give some useful results such as the maximum message processing capacity according to the change of the performance of local CPU, and the local CPU maximum throughput according to the change of average message length, which is applicable as a reference data for the improvement or expansion of the ATM control system.

  • PDF

An Effective Solution to Overcome the Restriction of SACK Blocks' Number in TCP SACK (오프셋을 활용한 효율적인 TCP SACK 메커니즘)

  • Lin, Cui;Hong, Choong-Seon
    • The KIPS Transactions:PartC
    • /
    • v.12C no.7 s.103
    • /
    • pp.1039-1046
    • /
    • 2005
  • TCP SACK is the unique mechanism to reflect the situation of sink's sequence space, some TCP variants and proposals can perform in conjunction with SACK mechanism for achieving optimal performance. By definition of RFC 2018, however, each contiguous block of data queued at the data receiver is defined in the SACK option by two 32-bit unsigned integers in network byte order. Since TCP Options field has a 40-byte maximum length, when error bursts now, we note that the available option space may not be sufficient to report all blocks present in the receiver's queue and lead to unnecessarily force the TCP sender to retransmit Packets that have actually been received by TCP sink. For overcoming this restriction, in this thesis, a new solution named 'one-byte offset based SACK mechanism' is designed to further improve the performance or TCP SACK and prevent those unwanted retransmissions. The results or both theory analysis and simulation also show that his proposed scheme operates simply and more effectively than the other existing schemes by means of the least bytes and most robust mechanism to the high packet error rates often seen in networks environment.

On the Analysis of Transportation Process of Pusan Port (시뮬레이션에 의한 부산항만 운송과정의 분석에 관하여)

  • 박계각
    • Journal of the Korean Institute of Navigation
    • /
    • v.10 no.1
    • /
    • pp.101-127
    • /
    • 1986
  • Transportation provides an infrastructure vital to economic growth, and it is an integral part of production . As a port is the interface between the maritime transport and domestic transport sectors, it certainly plays a key role in any economic development. Therefore, it is doubtless that inadequacy of a nation's port will depress the level of throughput, to the level where it fails to meet the target set by the national economic planning schemes. Korea is surrounded by the seas and the economic structure of Korea consists of processing trades, so that it cannot be overstated that substantial economy in maritime transport coasts can be achieved through the improvement of the port transport system. This paper treats the transportation process in Pusan Port by Queueing Simulation method, and the reasonable size of Pusan Port is suggested from the point of view of efficiency maximization. The results of the analysis are summarized as follows; 1) the utility rate is 47.91 percents in general piers, 85-52 percents in container piers, and waiting time 5.2hrs, in general piers, 0.8 hrs, in container piers, and the probability of maximum queue length 12 ships in general piers, 2 ships in container piers, and the probability of waiting is 44 percents in general piers, 8 percents in container pier. 2) in general piers, the improvement of app. 30 percents in port capacity is desirable for operating effectively concerning the current arrival rate. By introducing the traffic control ion container piers, there is no apparent necessity of port investment, but I is expected to reduce invisible congestion occurred along the waiting line. 3) On Pusan Port, the optimal utility rate and the optimal arrival rate for reducing waiting time are 3.5 to 4.0(hrs./ship) in general piers, 5.1 to 6.0(hrs./ship) in container piers.

  • PDF

A Study of Classification Analysis about Traffic Conditions Using Factor Analysis and Cluster Analysis (요인분석 및 군집분석을 활용한 교통상황 유형 분류분석)

  • Su-hwan Jeong;Kyeung-hee Han;Jaehyun (Jason) So;Choul-ki Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.65-80
    • /
    • 2023
  • In this study, a classification analysis was performed based on the type of traffic situation. The purpose was to derive the major variable factors that could represent the traffic situation. The TTI(Travel Time Index) was used as a criterion for determining traffic conditions, and analysis was performed using data generally detected by the Vehicle Detecting System(VDS). First, the major factors influencing the traffic situation were selected through factor analysis, and traffic conditions were clustered through a cluster analysis of the major factors. After that, variance analysis for each cluster was performed based on the TTI, and similar clusters were merged to categorize the type of traffic situation. The analysis derived, the maximum queue length and occupancy as major factors that could represent the traffic situation. Through this study, it is expected that efficient management of traffic congestion would be possible by just concentrating on the main variable factors that affect the traffic situation.

Design and Analsis of a high speed switching system with two priority (두개의 우선 순위를 가지는 고속 스윗칭 시스템의 설계 및 성능 분석)

  • Hong, Yo-Hun;Choe, Jin-Sik;Jeon, Mun-Seok
    • The KIPS Transactions:PartC
    • /
    • v.8C no.6
    • /
    • pp.793-805
    • /
    • 2001
  • In the recent priority system, high-priority packet will be served first and low-priority packet will be served when there isn\`t any high-priority packet in the system. By the way, even high-priority packet can be blocked by HOL (Head of Line) contention in the input queueing System. Therefore, the whole switching performance can be improved by serving low-priority packet even though high-priority packet is blocked. In this paper, we study the performance of preemptive priority in an input queueing switch for high speed switch system. The analysis of this switching system is taken into account of the influence of priority scheduling and the window scheme for head-of-line contention. We derive queue length distribution, delay and maximum throughput for the switching system based on these control schemes. Because of the service dependencies between inputs, an exact analysis of this switching system is intractable. Consequently, we provide an approximate analysis based on some independence assumption and the flow conservation rule. We use an equivalent queueing system to estimate the service capability seen by each input. In case of the preemptive priority policy without considering a window scheme, we extend the approximation technique used by Chen and Guerin [1] to obtain more accurate results. Moreover, we also propose newly a window scheme that is appropriate for the preemptive priority switching system in view of implementation and operation. It can improve the total system throughput and delay performance of low priority packets. We also analyze this window scheme using an equivalent queueing system and compare the performance results with that without the window scheme. Numerical results are compared with simulations.

  • PDF