• Title/Summary/Keyword: Maximum principal stress

Search Result 198, Processing Time 0.02 seconds

REMOVAL TORQUE AND BONE FORMATION OF ORTHODONTIC MINISCREW IMPLANT (교정용 미니스크류 임플랜트의 제거회전력 및 골형성에 관한 연굴)

  • Yun, Young-Kuk;Ryu, Jae-Jun;Suh, Kyu-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.492-505
    • /
    • 2007
  • Statement of problem: An orthodontic miniscrew implant has been used as a skeletal anchorage for orthodontic treatment. However, any relation among the influence of the cortical bone, morphologic differences of orthodontic miniscrew implants and new bone formation hasn't been made clear yet. Purpose: The purpose of this study was to evaluate whether the orthodontic miniscrew implant could work as an intraoral skeletal anchorage immediately and stably for orthodontic treatment after insertion of it. Material and methods: Two types of orthodontic miniscrew implants were used in this experiment; tapered type and straight type. One hundred and sixty eight orthodontic miniscrew implants were inserted into the tibiae of 21 rabbits and sacrificed on 3, 7, 11, 14, 21 and 28days later after insertion of them to study removal torque values and histologic and histomorphometric analyses. Results: The results were as follows. 1. The removal torque values of the tapered type were higher than those of the straight type in all groups(p<0.05). 2. There wasn't any distinguishing differences between the tapered type and the straight type about the new bone formation percentage. 3. The removal torque values for both the tapered type and the straight type were gradually decreased at early stages of the test but started to increase at the 7 days group of the straight type and the 11 days group of the tapered type. 4. New bone formation percentage was increased gradually for both the tapered and the straight types as time passed(p<0.05). 5. It was found that the tapered type showed lower values in the cortical bone about both the maximum equilibratory stress distribution and the maximum principal stress distribution than the straight type in linear finite elements analysis. Conclusion: According to the research, the removal torque values were decreased at 7 days group of the tapered type and 11 days group of the straight type after the insertion of the orthodontic miniscrew implants in tibiae of rabbits. Considering the human bone activity, it is better to apply the orthodontic force $3{\sim}4$ weeks later than to apply it immediately after the insertion of orthodontic miniscrew implants. Considering that general orthodontic force is about $250{\sim}500$ grams, the tapered type can be worked as a stable skeletal anchor age in an orthodontic treatment even if the orthodontic force is applied on it immediately after the insertion of it.

Mechanical Modeling of Pen Drop Test for Protection of Ultra-Thin Glass Layer (초박형 유리층 보호를 위한 펜 낙하 시험의 기계적 모델링)

  • Oh, Eun Sung;Oh, Seung Jin;Lee, Sun-Woo;Jeon, Seung-Min;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.49-53
    • /
    • 2022
  • Ultra-thin glass (UTG) has been widely used in foldable display as a cover window for the protection of display and has a great potential for rollable display and various flexible electronics. The foldable display is under impact loading by bending and touch pen and exposed to other external impact loads such as drop while people are using it. These external impact loads can cause cracks or fracture to UTG because it is very thin under 100 ㎛ as well as brittle. Cracking and fracture lead to severe reliability problems for foldable smartphone. Thus, this study constructs finite element analysis (FEA) model for the pen drop test which can measure the impact resistance of UTG and conducts mechanical modeling to improve the reliability of UTG under impact loading. When a protective layer is placed to an upper layer or lower layer of UTG layer, stress mechanism which is applied to the UTG layer by pen drop is analyzed and an optimized structure is suggested for reliability improvement of UTG layer. Furthermore, maximum principal stress values applied at the UTG layer are analyzed according to pen drop height to obtain maximum pen drop height based on the strength of UTG.

Stability Analysis of Multiple Thermal Energy Storage Caverns Using a Coupled Thermal-Mechanical Model (열-역학적 연계해석 모델을 이용한 다중 열저장공동 안정성 분석)

  • Kim, Hyunwoo;Park, Dohyun;Park, Eui-Seob;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.297-307
    • /
    • 2014
  • Cavern Thermal Energy Storage system stores thermal energy in caverns to recover industrial waste heat or avoid the sporadic characteristics of renewable-energy resources, and its advantages include high injection-and-extraction powers and the flexibility in selecting a storage medium. In the present study, the structural stability of rock mass pillar between these silo-type storage caverns was assessed using a coupled thermal-mechanical model in $FLAC^{3D}$. The results of numerical simulations showed that thermal stresses due to long-term storage depended on pillar width and had significant effect on the pillar stability. A sensitivity analysis of main factors indicated that the influence on the pillar stability increased in the order cavern depth < pillar width < in situ condition. It was suggested that two identical caverns should be separated by at least one diameter of the cavern and small-diameter shaft neighboring the cavern should be separated by more than half of the cavern diameter. Meanwhile, when the line of centers of two caverns was parallel to the direction of maximum horizontal principal stress, the shielding effect of the caverns could minimize an adverse effect caused by a large horizontal stress.

Micro Cutting of Tungsten Carbides with SEM Direct Observation Method

  • jung, Heo-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.770-779
    • /
    • 2004
  • This paper describes the micro cutting of wear resistant tungsten carbides using PCD (Poly-Crystalline Diamond) cutting tools in performance with SEM (Scanning Electron Microscope) direct observation method. Turning experiments were also carried out on this alloy (V50) using a PCD cutting tool. One of the purposes of this study is to describe clearly the cutting mechanism of tungsten carbides and the behavior of WC particles in the deformation zone in orthogonal micro cutting. Other purposes are to achieve a systematic understanding of machining characteristics and the effects of machining parameters on cutting force, machined surface and tool wear rates by the outer turning of this alloy carried out using the PCD cutting tool during these various cutting conditions. A summary of the results are as follows: (1) From the SEM direct observation in cutting the tungsten carbide, WC particles are broken and come into contact with the tool edge directly. This causes tool wear in which portions scrape the tool in a strong manner. (2) There are two chip formation types. One is where the shear angle is comparatively small and the crack of the shear plane becomes wide. The other is a type where the shear angle is above 45 degrees and the crack of the shear plane does not widen. These differences are caused by the stress condition which gives rise to the friction at the shear plane. (3) The thrust cutting forces tend to increase more rapidly than the principal forces, as the depth of cut and the cutting speed are increased preferably in the orthogonal micro cutting. (4) The tool wear on the flank face was larger than that on the rake face in the orthogonal micro cutting. (5) Three components of cutting force in the conventional turning experiments were different in balance from ordinary cutting such as the cutting of steel or cast iron. Those expressed a large value of thrust force, principal force, and feed force. (6) From the viewpoint of high efficient cutting found within this research, a proper cutting speed was 15 m/min and a proper feed rate was 0.1 mm/rev. In this case, it was found that the tool life of a PCD tool was limited to a distance of approximately 230 m. (7) When the depth of cut was 0.1 mm, there was no influence of the feed rate on the feed force. The feed force tended to decrease, as the cutting distance was long, because the tool was worn and the tool edge retreated. (8) The main tool wear of a PCD tool in this research was due to the flank wear within the maximum value of $V_{max}$ being about 260 $\mu\textrm{m}$.

An Engineering Geological Study of Moryang Fault for Tunnel Design (터널설계를 위한 모량단층의 지질공학적 연구)

  • 방기문;우상우
    • The Journal of Engineering Geology
    • /
    • v.10 no.3
    • /
    • pp.237-245
    • /
    • 2000
  • This study was for characterizing the engineering geological properties of Moryang Fault, and providing the basic data for tunnel design. Land-sat image analysis, geologic surveys, resistivity prospecting and 3-dimensional analysis for results of resistivity prospecting, core boring, mineralogical identification and chemical analysis for the bedrock, and K-Ar age dating for fault clay were carried out for the study of Moryang Fault which is located at Duckhyunri Sangbukmyun Uljinkun Ulsan metropolis. As a result of the study, it was shown that strike/dip was N20-3$0^{\circ}C$E/70-9$0^{\circ}C$NW, width of fault ranged from 20 to 60m(maximum 80m), and depth was more than 50m. K-Ar age dating results of fault clay were 5,700$\pm$1.129Ma and 1,900$\pm$0.380Ma. Hydraulic fracturing test results showed the principal stress direction similar to the strike of Moryang Fault.

  • PDF

Friction and Wear of Inconel 690 for Steam Generator Tube in Fretting (증기발생기 세관용 Inconel 690 의 프레팅 마찰 및 마멸특성)

  • Lee, Young-Ze;Lim, Min-Kyu;Oh, Se-Doo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.432-439
    • /
    • 2003
  • Inconel 690 for nuclear steam generator tube has more Chromium than the conventionally used Inconel 600 in order to increase the corrosion resistance. To evaluate the tribological characteristics of Inconel 690 under fretting condition the fretting tests were carried out in air and elevated temperature water. Fretting tests of the cross-cylinder type were done under various vibrating amplitudes and applied normal loads in order to measure the friction forces and wear volumes. From the results of fretting wear tests. the wear of Inconel 690 can be predictable using the work rate model. The amounts of friction forces were proportional to relative movement between two fretting surfaces. The friction coefficients were decreased as increasing the normal loads and deceasing the vibrating amplitudes. Depending on fretting environment, distinctively different wear mechanisms and often drastically different wear rates can occur It was found that the fretting wearfactors in air and water at 2$0^{\circ}C$, 5$0^{\circ}C$, and 8$0^{\circ}C$ were 7.38 $\times$ $10^{-13}$$Pa^{-1}$, 2.12 $\times$$10^{-13}$$Pa^{-1}$, 3.34$\times$$10^{-13}$$Pa^{-1}$and 5.21$\times$$10^{-13}$$Pa^{-1}$, respectively flexibility to model response data with multiple local extreme. In this study, metamodeling techniques are adopted to carry out the shape optimization of a funnel of Cathode Ray Tube, which finds the shape minimizing the local maximum principal stress. Optimum designs using two metamodels are compared and proper metamodel is recommended based on this research.

Design and Analysis of Aluminum Melting Machine in Fused Deposition Modeling Method (압출 적층 방식의 알루미늄 용융기의 설계 및 해석)

  • Lee, Hyun-Seok;Na, Yeong-Min;Kang, Tae-Hun;Park, Jong-Kyu;Park, Tae-Gone
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.62-72
    • /
    • 2015
  • Interest in three-dimensional (3D) printing processes has grown significantly, and several types have been developed. These 3D printing processes are classified as Selective Laser Sintering (SLS), Stereo-Lithography Apparatus (SLA), and Fused Deposition Modeling (FDM). SLS can be applied to many materials, but because it uses a laser-based material removal process, it is expensive. SLA enables fast and precise manufacturing, but available materials are limited. FDM printing's benefits are its reasonable price and easy accessibility. However, metal printing using FDM can involve technical problems, such as suitable component supply or the thermal expansion of the heating part. Thus, FDM printing primarily uses materials with low melting points, such as acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA) resin. In this study, an FDM process for enabling metal printing is suggested. Particularly, the nozzle and heatsink for this process are focused for stable printing. To design the nozzle and heatsink, multi-physical phenomena, including thermal expansion and heat transfer, had to be considered. Therefore, COMSOL Multiphysics, an FEM analysis program, was used to analyze the maximum temperature, thermal expansion, and principal stress. Finally, its performance was confirmed through an experiment.

Numerical study on the structural stability of the precast joint buttress wall (프리캐스트 조인트 방법을 사용한 부벽식 옹벽의 구조적 안정성에 대한 수치해석 연구)

  • Kim, Joonseok
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.4
    • /
    • pp.366-372
    • /
    • 2016
  • Recently in case of the concrete retaining wall precast technological change in the field assembled by the way. A precast wall is devied into upper and lower respectively, and the way, assembled in field is being performed. But the assembled part could have been damaged by the earth pressure in a relatively high buttress wall. And, it have been pointed out that large-scale disaster can be occurred. Thus, in this thesis, a structural stability for the buttressed retaining wall with pre-cast joint method was analyzed by a numerical analysis method. The structural stability of the three height retaining wall(7.6m, 8.5m, 10m) was conducted respectively for earth pressure. The maximum principal stress applied to the concrete retaining wall was analyzed to occur locally in the vicinity of the fixing anchor as 23.3 ~ 43.2 MPa.

Low velocity impact response and dynamic stresses of thick high order laminated composite truncated sandwich conical shell based on a new TDOF spring-mass-damper model considering structural damping

  • Azizi, A.;Khalili, S.M.R.;Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.771-791
    • /
    • 2018
  • This paper deals with the low velocity impact response and dynamic stresses of composite sandwich truncated conical shells (STCS) with compressible or incompressible core. Impacts are assumed to occur normally over the top face-sheet and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The displacement fields of core and face sheets are considered by higher order and first order shear deformation theory (FSDT), respectively. Considering continuity boundary conditions between the layers, the motion equations are derived based on Hamilton's principal incorporating the curvature, in-plane stress of the core and the structural damping effects based on Kelvin-Voigt model. In order to obtain the contact force, the displacement histories and the dynamic stresses, the differential quadrature method (DQM) is used. The effects of different parameters such as number of the layers of the face sheets, boundary conditions, semi vertex angle of the cone, impact velocity of impactor, trapezoidal shape and in-plane stresses of the core are examined on the low velocity impact response of STCS. Comparison of the present results with those reported by other researchers, confirms the accuracy of the present method. Numerical results show that increasing the impact velocity of the impactor yields to increases in the maximum contact force and deflection, while the contact duration is decreased. In addition, the normal stresses induced in top layer are higher than bottom layer since the top layer is subjected to impact load. Furthermore, with considering structural damping, the contact force and dynamic deflection decrees.

Study on Hydraulic Fracturing in Transverse Isotropic Rock Using Bonded Particle Model (입자결합모델을 이용한 횡등방성 암석에서의 수압파쇄 특성 연구)

  • Jung, Jaewoong;Heo, Chan;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.470-479
    • /
    • 2013
  • Hydraulic fracturing is used as a method for promoting the fluid flow in the rock and, in the energy field such as geothermal development and the development of sales gas, many studies has been actively conducted. In many cases, hydraulic fracturing is not performed in isotropic rock and especially in the case of sedimentary rocks, hydraulic fracturing is conducted in the transverse isotropic rock. The direction of the crack growth on hydraulic fracturing does not necessarily coincides with the direction of maximum principal stress in the transverse isotropic rock. Therefore, in this study, bonded particle model with hydro-mechanical coupling analysis was adopted for analyzing the characteristics of hydraulic fracturing in transverse isotropic rock. In addition, experiments of hydraulic fracturing were conducted in laboratory-scale to verify the validity of numerical analysis. In this study, the crack growth and crack patterns showed significant differences depending on the viscosity of injection fluid, the angle of bedding plane and the influence of anisotropy. In the case of transverse isotropic model, the shear crack growth due to hydraulic fracturing appeared prominently.