• Title/Summary/Keyword: Maximum power point

Search Result 913, Processing Time 0.041 seconds

Photovoltaic Power Generation Control by A New Buck-Boost chopper circuit (새로운 승강압 초퍼회로에 의한 태양광발전제어)

  • Kim, Y.C.;Byun, H.G.;Suh, K.Y.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2177-2180
    • /
    • 1997
  • The solar cell has an optimum operating point to be able to got maximum power. To obtain maximum power from Photovoltaic array, hotovoltaic power system usually requres maximum power point c tracking controller. The output characteristics of solar cell are nonlinear, and these characteristics vary with load solar insolation, solar cell temperature. Therefore the tracking control of maximum power point is the com-plicated problem. This paper presents power characteristics of residential Photovoltaic system applying a buck-boost conversion system.

  • PDF

Photovoltaic Power Generation Control by A Partial Resonant Buck-Boost chopper circuit (부분공진 승강압 초퍼회로에 의한 태양광발전제어)

  • Byun, H.G.;Moon, S.P.;Suh, K.Y.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.413-415
    • /
    • 1997
  • The solar cell has an optimum operating point to be able to get maximum power. To obtain maximum power from Photovoltaic array, potovolt aic power syste usually requres maximum power point tracking controller. The output characteristics of solar cell are nonlinear, and these characteristics vary with load solar insolation, solar cell temperature. Therefore the tracking control of maximum power point is the complicated problem. This paper presents power characteristics of residential Photovoltaic system applying a quck-boost conversion system.

  • PDF

Comparison of MPPT Based on Fuzzy Logic Controls for PMSG

  • Putri, Adinda Ihsani;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.285-286
    • /
    • 2011
  • Maximum Power Point Tracker (MPPT) is the big issue in generating power based on Wind Energy Conversion System. In case of unknown turbine characteristic, it is useful to implement MPPT based on fuzzy logic control. This kind of control is able to find the value of duty cycle to meet maximum power point at particular wind speed. There are many methods to develop MPPT based fuzzy logic controls. In this paper, two of the methods are compared both at low and high fluctuating wind speed.

  • PDF

A Study on Constant Power Generation Algorithms for a Whole Range Power Point Tracking in Photovoltaic Systems (태양광 시스템의 전 범위 전력점 추종을 위한 CPG 알고리즘에 관한 연구)

  • Yang, Hyoung-Kyu;Bang, Taeho;Bae, Sunho;Park, Jung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.111-119
    • /
    • 2019
  • In this study, constant power generation (CPG) algorithms are introduced for whole range power point tracking in photovoltaic systems. Currently, maximum power point tracking (MPPT) algorithm is widely used for high-power photovoltaic systems. However, MPPT algorithm cannot flexibly control such systems according to changing grid conditions. Maintaining grid stability has become important as the capacity of grid-connected photovoltaic systems is increased. CPG algorithms are required to generate the desired power depending on grid conditions. A grid-connected photovoltaic system is configured, and CPG algorithms are implemented. The performances of the implemented algorithms are compared and analyzed by experimental results.

A study on the MPPT(Maximum Power Point Tracking) for Photovoltaic System using Neural Controller (신경 제어기에 의한 Photovoltaic System의 MPPT구현에 관한 연구)

  • Cha, In-Su;Choe, Jang-Gyun;Yu, Gwon-Jong
    • Solar Energy
    • /
    • v.18 no.1
    • /
    • pp.27-34
    • /
    • 1998
  • A maximum power point tracking(MPPT) converter, to enhance the converter efficiency is evaluated within the laboratory. The converter is controlled to track the maximum power point of the input photovoltaic(PV) source by varying the input and output parameter-conditions of irradiation, temperature, etc. The purpose of this paper is to develop a new maximum power point tracking(MPPT) using neural controller. Neural controller are applied to control of MPPT by boosting converter duty ratios compensation effect with 8 bit single chip 8051 microcontroller.

  • PDF

Maximum Power Point Tracking Photovoltaic Invert (최대전력 추적 태양광 인버터 시스템)

  • Kim, Man-Sig;Kim, Sil-Keun;Hong, Jung-Pyo;Hong, Soon-Ill
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1191-1192
    • /
    • 2006
  • This paper propose method of maximum power point tracking using boost converter for a connected single phase inverter. The maximum power point tracking control is based on generated circuit control MOSFET switch of two boost converter and single phase inverter uses predicted current control to control four IGBT's switch in full bridge. The predicted current control provide current with sinusoidal wave shape and inphase with voltage.

  • PDF

Implemented of Photovoltaic Inverter System by a Maximum Power Point Tracking (최대전력점 추적에 의한 태양광 인버터 시스템 구현)

  • Song, In-Sun;Kim, Sil-Keun;Jung, Seoung-Hwan;Hong, Soon-Ill
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.224-225
    • /
    • 2007
  • In this paper proposed method of maximum power point tracking using boost converter for a connected single phase inverter. The maximum power point tracking control is based on generated circuit control MOSFET switch of two boost converter and single phase inverter uses predicted current control to control four IGBT's switch in full bridge. The predicted current control provide current with sinusoidal wave shape and inphase with voltage.

  • PDF

Implementation of a Stand-alone Photovoltaic Pumping System with Maximum Power Point Tracking

  • Zhengming Zhao;Kunlun Chen;Liqiang Yuan
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.635-638
    • /
    • 2001
  • Photovoltaic (PV) pumping systems with maximum power point tracking (MPPT) technique aims at obtaining the highest possible power to the pump under various insolation and temperature, thus overcomes the mismatch between the photovoltaic panel and the pumping load. A simple method of tracking the maximum power points and forcing the system to operate close to these points is presented in this paper. The MC68HC908GP32 micro control unit (MCU) is employed to implement the proposed MPPT controller. Experimental results will also show the performances of the photovoltaic pumping system with the MPPT technique.

  • PDF

Maximum Output Power Control for PV Generation System basedon Fuzzy Logic Algorithm

  • Abo-Khalil Ahmed G.;Lee Dong-Choon;Seok Jul-Ki;Choi Jong-Woo;Kim Heung-Keun
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.69-72
    • /
    • 2003
  • The paper presents implementation of a PV fuzzy logic power tracking controller. Using maximum power point tracker with the intermediate converter can increase the system efficiency by matching the PV system to the load. A new fuzzy MPPT is proposed, where fuzzy inputs parameters are dp/dI and the last incremental of duty of duty ratio $L{\delta}D$, and the output is the new incremental value $(new{\delta}D)$ according to the maximum power point under various illumination levels.

  • PDF

Analysis of the Effects of the Irradiation and Cell-Temperature on the Dynamic Responses of PV System with MPPT (태양광의 세기와 셀 온도가 최대전력 추종을 하는 태양광 발전의 동특성에 미치는 영향 분석)

  • Loc, Nguyen Khanh;Moon, Dae-Seong;Seo, Jae-Jin;Won, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1142-1143
    • /
    • 2008
  • As well known, the maximum power point tracking (MPPT) is an important role in photovoltaic (PV) power systems. MPPT finds and maintains the operation of PV at the maximum power point when the irradiation and cell-temperature change. In this paper, the studied system includes a PV array, a Buck-Boost DC/DC converter, a DC/AC inverter and it is connected to the three phase power system. The solar array operates as a non-linear voltage source. The P&O algorithm with power feed-back is used to control the operating point of PV array at the maximum power point. The effects of irradiation and cell-temperature on the dynamic responses are also considered.

  • PDF