• Title/Summary/Keyword: Maximum load

Search Result 3,955, Processing Time 0.027 seconds

A Study on the Bending Performance of Structural Size Lumbers Using the ANSYS (ANSYS를 이용한 실대재의 휨특성에 대한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korea Furniture Society
    • /
    • v.22 no.4
    • /
    • pp.323-329
    • /
    • 2011
  • In our country, domestic species can not be used as a structural member because we have not yet grading system. So, to utilize as a basic data of grading system, bending test and numerical modelling on structural member were conducted in this study. 35 of Douglas-fir, 2" ${\times}$ 6", span 2.4 m were tested for the bending properties, and Ansys software was used to analyze the numerical modelling on the structural members. The data of knots were inspected and applied in numerical modelling. To obtain the accuracy of analysis, nonlinear numerical analysis was carried out instead of linear numerical analysis. Ultimate load had a wide range from 4883N to 11,738 N, and maximum deformation also had a range from 26 mm to 68 mm. Average of ultimate load was 8,616 N, and that of maximum deformation was 48 mm. The distinctive features of failure types were simple tension type and cross-grain tension type. Ulitmate load and maximum deformation from numerical modelling were 7,504 N and 37 mm. The numerical modelling drawn by this study is available to all species, and reasonable prediction on the bending performance is possible with only some material properties.

  • PDF

Effect of Boundary Conditions on Reliability and Cumulative Distribution Characteristics of Fatigue Failure Life in Magnesium Alloy (마그네슘합금의 피로파손수명의 누적확률분포특성과 신뢰성에 미치는 경계조건의 영향)

  • Choi, Seon-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.594-599
    • /
    • 2011
  • In this paper, the effect of the boundary conditions on the reliability and the cumulative distribution characteristics of the fatigue failure life is analyzed in a magnesium alloy AZ31. The boundary conditions are specimen thickness, stress ratio, and maximum fatigue load. The statistical data of the fatigue failure life are obtained by fatigue crack propagation tests under the detail conditions for each boundary condition. The 3-parameter Weibull distribution is used to analyze a statistical characteristics of the fatigue failure life in magnesium alloy AZ31. It is found that the statistical fatigue failure life is long in the case of a thicker specimen, a larger stress ratio, and a smaller maximum fatigue load. Under the opposite cases, the reliability on the fatigue failure life is rapidly dropped.

Theoretical and experimental analysis of wave propagation in concrete blocks subjected to impact load considering the effect of nanoparticles

  • Amnieh, Hassan Bakhshandeh;Zamzam, Mohammad Saber
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.711-718
    • /
    • 2017
  • Nanotechnology is a new filed in concrete structures which can improve the mechanical properties of them in confronting to impact and blast. However, in this paper, a mathematical model is introduced for the concrete models subjected to impact load for wave propagation analysis. The structure is simulated by the sinusoidal shear deformation theory (SSDT) and the governing equations of the concrete model are derived by energy method and Hamilton's principle. The silicon dioxide ($SiO_2$) nanoparticles are used as reinforcement for the concrete model where the characteristics of the equivalent composite are determined using Mori-Tanaka approach. An exact solution is applied for obtaining the maximum velocity of the model. In order to validate the theoretical results, three square models with different impact point and Geophone situations are tested experimentally. The effect of different parameters such as $SiO_2$ nanoparticles volume percent, situation of the impact, length, width and thickness of the model as well as velocity, diameter and height of impactor are shown on the maximum velocity of the model. Results indicate that the theoretical and experimental dates are in a close agreement with each other. In addition, using from $SiO_2$ nanoparticles leads to increase in the stiffness and consequently maximum velocity of the model.

Evaluation of Structural Performance of RC Beams retrofitted PVA Fiber to the Change of Replacement Ratio of Recycled Fine Aggregates and Blast Furnace Slag (고로슬래그 미분말 및 순환잔골재를 적용한 PVA섬유 보강 철근콘크리트 보의 구조성능 평가)

  • Ha, Gee-Joo;Yi, Dong-Ryul;Ha, Jae-Hoon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.8
    • /
    • pp.3-11
    • /
    • 2018
  • In this study, total nine R/C beams, designed by the PVA Fiber with ground granulated blast furnace slag and recycled fine aggregate were constructed and tested under monotonic loading. In the material development, micromechanics was adopted to properly select the optimized range of the composite based on steady-state cracking theory and experimental studies on the matrix and interracial properties. Experimental programs were carried out to improve and evaluate the structural performance of the test specimens: the load-displacement, the failure mode, the maximum strength, and ductility capacity were assessed. Test results showed that test specimens (BSPR-20, 40) was increased the maximum load carrying capacity by 3~6% and the ductility capacity by 9~14% in comparison with the standard specimen (BSS). And the specimens (BSPR-60, 80, 100) was decreased the maximum load carrying capacity by 0~4% and the ductility capacity by 79% in comparison with the standard specimen (BSS) respectively.

Evaluation of Structural Performance of Steel Fiber Reinforced Concrete Beams using Industrial By-products and Recycled Fine Aggregates (산업부산물과 순환잔골재를 적용한 강섬유 보강 철근콘크리트 보의 구조성능 평가)

  • Ha, Gee-Joo;Yi, Dong-Ryul;Ha, Jae-Hoon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.11
    • /
    • pp.11-18
    • /
    • 2018
  • In this study, seven R/C beams, designed by the steel fiber with ground granulated blast furnace slag and recycled fine aggregate were constructed and tested under monotonic loading. In the material development, micromechanics was adopted to properly select the optimized range of the composite based on steady-state cracking theory and experimental studies on the matrix and interracial properties. Experimental programs were carried out to improve and evaluate the structural performance of the test specimens: the load-displacement, the failure mode, the maximum strength were assessed. Test results showed that test specimens (BSSR-20, 40, 60, 80) were increased the maximum load carrying capacity by 2~9% and the ductility capacity by 10~22% in comparison with the standard specimen (BSS) respectively. And the specimens (BSSR-100) was decreased the maximum load carrying capacity by 5% and the ductility capacity by 44% in comparison with the standard specimen (BSS) respectively.

Characterization on the Variation of Streamflow at the Unit Watershed for the Management of Total Maximum Daily Loads - in Guem River Basin - (수질오염총량관리 단위유역의 유량변화 특성분석 - 금강수계를 대상으로 -)

  • Park, Jun Dae;Oh, Seung Young;Choi, Ok Youn
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.914-925
    • /
    • 2011
  • The variation of streamflow is regarded as one of the most influential factors on the fluctuation of water quality in the stream. The characteristics of the variation should be taken into account in the plans for the management of Total Maximum Daily Loads (TMDLs). This study analysed and characterized spatial distribution and temporal variation of streamflow at each unit watershed in Guem-river basin. For the analysis of the distribution of streamflow, the type and the extent of the distribution were investigated for the unit watershed. For the analysis of the variation, short and long term changes of streamflow were examined. The result showed that most of the distributions were not log-normalized and the extent of variation tends to be greater at the unit watershed placed on the tributaries in the basin. A kind of margin could be granted to the unit watershed involving high variations so as to establish the water quality goal and load allotment more reasonably and effectively in view of whole waterbody.

FATIGUE DESIGN FORSUS30IL SPOT-WELDED MULTI-LAP JOINTS SUBJECTED TO TENSILE SHEAR LOAD

  • Na, T.H.m;Jung, W.S.;Bae, D.H;I.S.Shon
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.121-126
    • /
    • 2002
  • The railroad cars or the commercial vehicles are generally manufactured by the spot welding. Among various kinds of spot welded lap joints, multi-lap joints are one of popular joints in manufacturing their body structures. But, fatigue strength of these joints are lower than that of base metal due to high stress concentration at the nugget edge of the spot weld and are known to considerably be influenced by welding conditions as well as the mechanical and geometrical factors. Thus, it is necessary to establish a reasonable and systematic fatigue design criterion for spot welded multi-lap joints. In this paper, the $\Delta$P-N$_{f}$ curves has been rearranged in the $\Delta$$\sigma$-N$_{f}$ relation with the maximum stress at the nugget edge of spot welded multi-lap joints subjected to tensile shear load. Consequently, the fatigue data were evaluated in terms of fracture mechanics by plotting on the $\Delta$OP-N$_{f}$ curves. From the results obtained, both of them have been revealed to be applicable to fatigue design of spot welded multi-lap joints. However, the fracture mechanical approach is found to be more effective than the maximum stress approach in the range on N$_{f}$$\geq$2x10$^{5}$ . .

  • PDF

Tensile Experiment and FE Analysis of L-type Flange Bolt Connection in Wind Turbine Support Structures (풍력터빈 지지구조물의 볼트 체결된 L형 플랜지에 대한 인장 실험 및 FE해석)

  • Dae-Jin Jung;Ik-Qhang Choi
    • Journal of Wind Energy
    • /
    • v.15 no.2
    • /
    • pp.37-44
    • /
    • 2024
  • In this study, a tensile test and FE analysis were conducted on a bolt-connected L-shaped flange to evaluate its behavior and load resistance. A total of five specimens were manufactured using the inner and outer distances and bolt diameters of the L-type flange as experimental variables. As a result of the tensile test of the L-shaped flange, as the internal and external length ratio (b/a) increased, the maximum load decreased and the maximum displacement increased. As the diameter (d) of the bolt increased, the maximum load and the deformation of the wall increased. The shapes of the destruction specimens showed two forms of destruction: one due to the fall of the nut and the surrender of the bolt as the thread of the bolt and nut was worn out, followed by the surrender of the wall. As a result of FE analysis, it was found that elasto-plastic model (EPM) analysis similarly tracks the behavior of the tensile test results.

Evaluation and Improvement of Structural Performance of Reinforced Shear Walls Under Load Reversals (철근콘크리트 내진벽의 구조성능 평가 및 개선)

  • 신종학;하기주;안준석;주정준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.683-688
    • /
    • 1999
  • The purpose of this study is to develop and evaluate the structural performance of various shear walls, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. under load reversals. For the diagonal reinforced slit and infilled shear wall specimens, it was found that the failure mode shows very effective crack control and crashing due to slippage prevention of boundary region and reduction of diagonal tension rather than the brittle shear and diagonal tension failure. The ductility of specimens designed by the diagonal reinforcement for the slit and infilled shear wall was increased 1.72~1.81 times in comparison with the fully rigid shear wall frame. Maximum horizontal load-carrying capacity of specimens designed by the diagonal reinforcement ratio the slit and infilled shear wall was increased respectively by 1.14 times and 1.49 times in comparison with the standard fully rigid shear wall frame.

  • PDF

Operation Analysis of Full-Bridge Series Resonant Converters with Considering the Load Short (부하단락을 고려한 직렬공진형 컨버어터의 운전해석)

  • Park, Min-Ho;Hong, Soon-Chan;Yoon, Duck-Yong;Park, Young-Jeen;Kim, Ji-Han
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.608-611
    • /
    • 1989
  • The full-bridge series resonant converter is analyzed to limit the maximum values of the current and the voltage across resonant capacitor in the case of load short. If the converter is operated in the optimal region derived in this paper, the maximum value of short-circuit current will be smaller or equal to that of the current in steady operation. Since the additional facilities for the protection against load short do not need, converters have advantages in weight, size, and cost.

  • PDF