본 연구는 국내 11 네일링 현장을 대상으로 경사계와 변형률계의 계측자료를 이용하여 쏘일네일링 벽체의 변위와 네일의 인장력을 고찰하였다. 연구결과 최대수평변위량은 시공과정이 양호한 현장의 경우와 불량한 경우 각각 굴착깊이(H)의 0.2%, 0.3%이하로 나타났으며, 벽체의 최대수평변위 발생위치는 지표면으로부터 굴착심도의 약 5~l5%이내의 벽체상단에서 발생하였다. 최종굴착깊이$(H_f)$와 네일의 길이(L)와의 길이비 R이 0.5이하, 0.5~0.6, 0.6~0.7인 경우 최대수평변위가 각각 굴착깊이(H)의 0.4%, 0.3%, 0.2%로 나타났다. 그러나 길이비 R이 0.7이상인 경우에는 최대수평변위가 굴착깊이의 약0.3%로 증가하는 것으로 나타났으며 이러한 결과는 굴착깊이가 얕고, 토사층 부분이 많았기 때문으로 판단된다. 최대인장력을 무차원화한 K값은 지표면으로부터 최종굴착깊이$(H_f)$의 $0.6H_f$까지는 0.8이하로 나타났으며, $0.6H_f$에서부터 최종굴착면까지 선형적으로 감소하는 것으로 나타났다. 그리고 최종굴착완료시 네일의 최대 인장력$(T_{max)$이 네일의 항복인장력$(T_{\sigmay)$에 최대 60%까지 도달하는 것으로 나타났다.
The results obtained by elasto-plastic analysis method about the displacement, deformation and stability on the soft ground excavation using sheet pile were summarized as follows ; 1. In the case of strut 1 step, the maximum wall displacement value in the first and the second excavation was small, but it increase remarkably after the third excavation and when the excavation depth was 8m, the point of maximum wall displacement was shown 0.75H~0.8H. 2. The value of safety factor(Fs) was increased with increasing of the penetration depth of sheet pile, cohesion and internal friction angle of ground. Safety factor was mostly effected by penetration depth of sheet pile and more effected by cohesion than internal friction angle of ground. 3. Since the deformation of sheet pile of this ground from the results of analysis and measurement increased remarkabaly after 6m excavation depth, it was desirable that the point of strut installation was GL-6m. 4. Safe excavation depth on ground by analysis considered penetration depth, cohesion and internal friction was shown at the table 3.
Based on the field measuring data obtained from excavation sections in Inchon International Airport project, the relationships between the horizontal displacement of sheet-pile walls and the deformations of soft ground around the excavation were investigated. The horizontal displacements of walls according to supporting method are largely occurred in order of anchors, anchors with struts, and struts. The depths of maximum horizontal displacement are varied with supporting systems. If the stability number shows lower than ${\pi}$, the maximum horizontal displacement and the velocity of maximum horizontal displacement are respectively developed less than 1% of excavation depth and 1mm/day. When the stability number shows lower than ${\pi}+2$, the maximum horizontal displacement and the velocity are respectively developed less than 2.5% of excavation depth and 2mm/day. Also, when the stability number shows more than ${\pi}+2$, the maximum horizontal displacement and the velocity are rapidly increased.
한국지반공학회 1991년도 추계학술발표회 논문집 지반공학에서의 컴퓨터 활용 COMPUTER UTILIZATION IN GEOTECHNICAL ENGINEERING
/
pp.123-132
/
1991
The GEOKST program was used to solve the tunnel example problem. The package can solve such geotechnical problem as excavation, embankment, foundations, etc., in which the soil can be modeled by various elastoplastic geomaterial models. The main objective was to consider the effects of excavation depth to the face of the tunnel on the stability of the ground and support system. Depended on the strength of the ground materials, the limit excavation depth without any support system could be established by analyzing three-dimensional excavation problem. In this given example problem, the strengths of the ground materials were enough for the stability of the tunnel without any support system up to fairly deep excavation and the maximum tunnel section displacement was stabilized as the excavation proceed. The asymptotic value was approximately the same as that of the plane strain analysis. Thus, assuming the plain strain condition and simulation the actual excavation procedure, the maximum tunnel section displacement was caculated after final step. The maximum calculated displacement occured at the top section of the tunnel geometry and was about 8mm.
Numerical analysis has been performed to estimate maximum settlement and maximum horizontal displacement due to tunnel excavation varying ground condition, tunnel depth and diameter, and construction condition (volume loss at excavation face). The maximum surface settlement from the numerical analysis has been compared with the maximum settlement at tunnel crown considering ground condition, tunnel depth and diameter, and construction condition, and it has been also compared with the maximum horizontal displacement. The results from the numerical analysis have been compared with field measurements to confirm the applicability and validity of the results and by this comparison it is believed that the numerical results in this study can be utilized practically in analyzing the ground movements due to tunnel excavation.
In this study, displacement, deformation, and stability according to change of cohesion and internal friction angle were investigated through elasto-plastic method, finite-element method, and in-site experiment when excavating soft ground using sheet pile. The results of the study were as follows : 1. The horizontal displacement was 5.5% of the excavation depth by the elasto-plastic method and 3.9% of the excavation depth by the on-site experiment at the final excavation depth(GL-8.Om) on the condition of double stair strut after excavating GL-6.Om. 2. Relationships between cohesion(c) and internal friction angle $({\varphi})$ when safety factor to the penetration depth was 1.2 is shown in the following equations : (a) c= -O.0086$({\varphi})$+ O.3(D=3m) and (b) c=-0.00933$({\varphi})$+0.14(D=4m). 3. The results of elasto-plastic method and the experiment show that possible excavation depth was GL-6.Om after setting single stair strut in a short period in terms of possibility of carrying out on the condition of experimental site on the contrary general reinforcement method, setting double stair strut after excavating GL-4.0m. 4. After setting the strut, distribution of the horizontal displacement had concentrated on the excavation base and possible local failure which the shear strain caused decreased by the strut reinforced. 5. After setting strut, displacement of sheet pile was decreased by half, the limit of stable excavation depth of ground was GL-8.Om, and the maximum horizontal displacement at the GL-8.Om was 1.6% of excavation depth by the elasto-plastic method, 0.7% of excavation depth by the finite-element method.
본 논문에서는 터널굴착으로 발생한 지표면에서의 최대 침하 및 수평변위와 총 침하부피량을 추정하기 위하여 서로 상이한 지층에서 다양한 깊이 및 직경, 서로 다른 시공조건(지반손실량)을 가진 터널에 대해 수치해석을 수행하였다. 수치해석 결과로부터 얻어진 지표면에서의 최대 침하량은 터널 굴착부 천단에서의 최대 침하량과 지층별, 터널직경 및 깊이, 시공조건(지반손실량)별로 비교되었으며, 또한 지표면에서의 최대 침하량은 지표면에서의 최대 수평변위량과도 비교하였다. 뿐만 아니라, 터널굴착부에서 발생한 지반손실량($V_L$)과 지표면에서 형성된 총 침하부피량($V_s$)을 지층 및 터널깊이와 직경을 달리하여 상호 비교하였다. 수치해석을 통해 얻어진 결과는 그 적용성과 타당성을 검증하기 위하여 기존 현장계측자료와의 비교가 수행되었으며, 이를 통해 본 연구의 수치해석 결과가 향후 터널굴착으로 발생된 주변 지반의 거동을 파악하고 분석하는 실무자료로서 활용될 수 있다는 것을 파악하였다.
Deep excavations for development of subway systems in metropolitan regions surrounded by adjacent buildings is an important geotechnical problem, especialy in Tabriz city, where is mostly composed of young alluvial soils and weak marly layers. This study analyzes the wall displacement and ground surface settlement due to deep excavation in the Tabriz marls using two dimensional finite element method. The excavation of the station L2-S17 was selected as a case study for the modelling. The excavation is supported by the concrete diaphragm wall and one row of steel struts. The analyses investigate the effects of wall stiffness and excavation width on the excavation-induced deformations. The geotechnical parameters were selected based on the results of field and laboratory tests. The results indicate that the wall deflection and ground surface settlement increase with increasing excavation depth and width. The change in maximum wall deflection and ground settlement with considerable increase in wall stiffness is marginal, however the lower wall stiffness produces the larger wall and ground displacements. The maximum wall deflections induced by the excavation with a width of 8.2 m are 102.3, 69.4 and 44.3 mm, respectively for flexible, medium and stiff walls. The ratio of maximum ground settlement to maximum lateral wall deflection approaches to 1 with increasing wall stiffness. It was found that the wall stiffness affects the settlement influence zone. An increase in the wall stiffness results in a decrease in the settlements, an extension in the settlement influence zones and occurrence of the maximum settlements at a larger distance from the wall. The maximum of settlement for the excavation with a width of 14.7 m occurred at 6.1, 9.1 and 24.2 m away from the wall, respectively, for flexible, medium and stiff walls.
널말뚝을 이용하여 연약지반을 굴착할 때 굴착단계에 따른 지반의 변위 변형 및 안정성을 분석하여 다음과 같은 결론을 얻었다. 1. 수평방향의 변위는 버팀대 설치전에는 굴착면 상부에서 크게 나타났으나, 버팀대 설치 후는 굴착저면의 아래쪽으로 이동되면서 집중되는 현상을 나타냈다. 2. 버팀대 설치후에 널말뚝의 변위는 설치 전보다 1/2정도로 급격히 감소함을 나타냈고, 지반의 안정한 굴착깊이의 한계는 2단 버팀대 설치후는 GL-8.0m정도로 나타났다. 3. 최대전단변형은 굴착깊이에 따라 점차로 증가하였고, 또 굴착저면에서 나타나는 전단변형에 의한 국부적인 파괴가능성은 버팀대로 보강함으로써 감소시킬 수 있었다. 4. GL-7.5m에서 널말뚝의 최대수평변위는 탄소성법에서는 굴착깊이의 0.2%, 유한요소법에서는 0.6%로 나타났으며, 굴착저면부근에서 최대변위를 나타냈다. 5. 해석모델지반에서 근입깊이에 대한 안전성을 확보하기 위해서는 버팀대 1단 설치의 경우는 D/H가 0.89이상, 2단설치의 경우는 D/H가 0.77이상이 될수 있도록 근입깊이를 확보하여야 할 것으로 판단된다. 6. 근입깊이에 대한 안전율과 D/H와의 관계에서 버팀대 1단 설치의 경우는 Fs = 0.736(D/H) + 0.54, 버팀대 2단 설치의 경우는 Fs = 0.750(D/H) + 0.62의 관계식을 나타냈다.
소단은 굴착 후 지지구조물이 설치되기 전 벽체의 강성과 더불어 가설벽체의 안정성을 좌우하는 역할을 한다. 특히 굴착지반이 느슨하거나 연약한 경우 소단의 역할은 매우 중요하다. 본 연구에서는 소단을 이용한 도심지 버팀굴착현장의 계측결과와 수치해석을 사용하여 가설벽체의 최대수평변위에 미치는 소단의 규모(폭과 경사) 및 굴착깊이, 지반물성의 영향을 분석하였다. 계측결과 소단 폭이 짧아질수록 벽체의 수평변위는 증가하는 경향을 보였다. 수치해석 결과 소단의 경사가 급해질수록, 소단폭이 짧아질수록 최대수평변위량은 크게 나타나 소단이 벽체의 변위를 억제하는데 효과가 있음을 알 수 있었다. 또한 굴착심도가 깊어질수록 소단폭과 경사의 영향을 크게 받는 것으로 나타났다. 동일한 소단 조건에서 지반물성이 높을수록 벽체의 최대수평변위를 억제하는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.