• Title/Summary/Keyword: Maximum contaminant level (MCL)

Search Result 18, Processing Time 0.028 seconds

The Significance of the Analytical Sciences In Environmental Assessment

  • Chung, Yong;Ahn, Hye-Won
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.1079-1087
    • /
    • 1995
  • The quality of human life is directly related to the quality of the environment. To assess environmental quality we must first determine the MCLG(Maximum Contaminant Level Goal), MCL(Maximum Contaminant Level), environmental impact and so on. The MCLG is the concentration at which no known adverse health effects occur. The MCLG is determined by risk assessment identifying which process is hazardous assessing, dose-response, human exposure, and characteristics of risk. With consideration of analytical methods, treatment technology, cost and regulatory impact, the MCL is set as close to the MCLG as possible. In this way, determination of the concentration and national distribution of contaminants is important for assessment of environmental quality The analytical sciences pose potential problems in assessing environmental quality. Continuing improvement in the performance of analytical instruments and operating technique has been lowering the limits of detectability. Contaminant concentration below the detection limit has usually been reported as ND(Not-Detected) and this has often been misunderstood as equivalent to zero. Because of this, more the contaminant concentration in the past was below the detection limit, whereas contaminants can be quantified now even though the contaminant concentration might remain the same or may even have decreased. In addition, environmental sampling has various components due to heterogeneous matrices. These samples are used to overestimate the concentration of the contaminant due to large variability, resulting in excess readings for MCL. In this paper, the significance of the analytical sciences is emphasized in both a conceptual and a technical approach to environmental assessment.

  • PDF

International Trends for Radionuclides Management in Drinking water (선진 외국에서의 먹는물 중 방사성물질 관리동향)

  • Park, Sun-Ku;Son, Ji-Hwan
    • Journal of Environmental Policy
    • /
    • v.5 no.2
    • /
    • pp.49-67
    • /
    • 2006
  • The radionuclides in drinking water have been regulated in many countries. In USA, the regulation has been revised for over 30 years since radionuclides have been regulated under Safe Drinking Water Act(SDWA) from 1974. Today, USEPA is finalizing maximum contaminant level goal(MCLG) of zero for radionuclides, maximum contaminant level(MCL) and alternative maximum contaminant level(AMCL) of 300pCi/L and 4,000pCi/L for radon respectively, MCLs of $30{\mu}g/L$ for uranium, and MCLs of 5pCi/L for combined radium 226 and 228. In Canada, Maximum Acceptable Concentration(MAC) value for uranium is $20{\mu}g/L$. WHO revised the guideline value of uranium and radon to $15{\mu}g/L$ and 100Bq/L in september 2004, respectively. On this survey, it has been found that international regulations for radionuclides in drinking water have been established and improved steadily on the knowledge basis from the past decades' studies.

  • PDF

Distribution Characteristics of Uranium and Radon Concentration in Groundwaters of Provinces in Korea (지역별 지하수중 우라늄과 라돈의 함량 분포 특성)

  • Jeong, Do-Hwan;Kim, Moon-Su;Ju, Byoung-Kyu;Kim, Tae-Seung
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.143-149
    • /
    • 2011
  • In order to figure out the characteristics of radionuclides concentrations of nine provinces, we analyzed uranium and radon in 681 samples of groundwater. Most of uranium concentrations in each province were less than $10{\mu}g/L$, and Gyeongnam, Jeonnam, Jeju provinces did not have groundwaters exceeding the US EPA drinking water MCL ($30{\mu}g/L$) of uranium. The ratio of radon values exceeding US EPA drinking water AMCL (4,000 pCi/L) was 22.6% (154/681) and Gyeongnam and Jeju provinces had no groundwaters exceeding the AMCL (alternative maximum contaminant level). Uranium and radon concentrations in groundwaters of Gyeonggi, Chungbuk, Jeonbuk, Chungnam mainly composed of the Mesozoic granite and the Precambrian gneiss were relatively high, but the concentrations of Gyeongnam and Jeju widely comprised of the sedimentary rock and the volcanic rock were relatively low. A week correlation between uranium and radon values showed in Gangwon, Chungbuk, Gyeonggi provinces.

Uranium and Radon Concentrations in Groundwater near the Icheon Granite (이천 화강암지역 지하수의 우라늄과 라돈 함량 특성)

  • Cho, Byong-Wook;Choo, Chang-Oh;Kim, Moon-Su;Lee, Young-Joon;Yun, Uk;Lee, Byeong-Dae
    • The Journal of Engineering Geology
    • /
    • v.21 no.3
    • /
    • pp.259-269
    • /
    • 2011
  • Concentrations of uranium (U) and radon (Rn) were measured in groundwater from 74 wells in the Icheon area, with the aim of determining the range and distribution of concentrations in an area underlain by granite (in this case, the Icheon granite). U concentrations ranged from 0.02 to 1,640.0 ${\mu}g/L$ (median value, 2.03 ${\mu}g/L$) and Rn concentrations ranged from 40 to 23,400 pCi/L (median value, 4,649 pCi/L). U concentrations in 10.8% of the samples exceeded 30 ${\mu}g/L$, which is the maximum contaminant level (MCL) proposed by the US Environmental Protection agency (EPA), based on the chemical toxicity of U. In addition, U concentrations in 59.5% and 13.5% of the samples exceeded 4,000 pCi/L (the Alternative MCL (AMCL) of the US EPA) and 8,100 pCi/L (Finland’s guideline level), respectively. We found no significant correlations between U (Rn) and other constituents, except for U-$HCO_3$ (correlation coefficient of 0.71), U-Ca (0.69), U-Li (0.45), U-Sr (0.43), and U-F (0.42). U and Rn contents in the groundwater are low relative to those in areas in other countries with similar geological settings, possibly due to the inflow of shallow groundwater to the wells in the Icheon area.

Analysis of 226Ra in the Groundwater Using the Gamma-ray Spectroscopy (감마선 분광법을 이용한 지하수 중의 226Ra 분석)

  • Seo, Bum-Kyoung;Lee, Kil-Yong;Yoon, Yoon-Yeol;Lee, Kune-Woo
    • Analytical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.39-47
    • /
    • 2003
  • The measurement of radium ($^{226}Ra$) in the groundwater was established using ${\gamma}$-ray spectroscopy without sample preparation. The background interference by air borne radon daughter nuclides was reduced by $N_2$ gas flow into the counting chamber. Leakage of radon gas produced in the radioactive equilibrium with radium and its daughter nuclides was prevented by use of the air-tighted aluminium container. We investigated the effect of air layer in the counting container. Radioactivity variation due to emanation of radon into the air layer was within the counting error range 5%. When the nitrogen gas was flowed around the detector, peak counts of ${\gamma}$-rays from the daughters of airborne radon was decreased and detection limit was decreased to 0.02 Bq/L. The detection limit of detector was lower than 0.74 Bq/L, the $^{226}Ra$ Maximum Contaminant Level (MCL) in the groundwater proposed by US Environmental Protection Agency (EPA). It was confirmed that $^{226}Ra$ radioactivity in the groundwater could be determined by the ${\gamma}$-ray spectroscopy.

Fuzzy optimization for the removal of uranium from mine water using batch electrocoagulation: A case study

  • Choi, Angelo Earvin Sy;Futalan, Cybelle Concepcion Morales;Yee, Jurng-Jae
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1471-1480
    • /
    • 2020
  • This research presents a case study on the remediation of a radioactive waste (uranium: U) utilizing a multi-objective fuzzy optimization in an electrocoagulation process for the iron-stainless steel and aluminum-stainless steel anode/cathode systems. The incorporation of the cumulative uncertainty of result, operational cost and energy consumption are essential key elements in determining the feasibility of the developed model equations in satisfying specific maximum contaminant level (MCL) required by stringent environmental regulations worldwide. Pareto-optimal solutions showed that the iron system (0 ㎍/L U: 492 USD/g-U) outperformed the aluminum system (96 ㎍/L U: 747 USD/g-U) in terms of the retained uranium concentration and energy consumption. Thus, the iron system was further carried out in a multi-objective analysis due to its feasibility in satisfying various uranium standard regulatory limits. Based on the 30 ㎍/L MCL, the decision-making process via fuzzy logic showed an overall satisfaction of 6.1% at a treatment time and current density of 101.6 min and 59.9 mA/㎠, respectively. The fuzzy optimal solution reveals the following: uranium concentration - 5 ㎍/L, cumulative uncertainty - 25 ㎍/L, energy consumption - 461.7 kWh/g-U and operational cost based on electricity cost in the United States - 60.0 USD/g-U, South Korea - 55.4 USD/g-U and Finland - 78.5 USD/g-U.

Quantitative Analysis of Nitrate and Nitrite in Rain, Milk and Infant Formula using Ion Chromatography (이온 크로마토그래피를 이용한 빗물과 분유, 우유중의 nitrite와 nitrate의 정량분석)

  • Kang, Mi-Jeong;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.583-586
    • /
    • 1999
  • The quantitative analysis of nitrate and nitrite in rain, milk and infant formula was done by Ion Chromatography. The nitrite was not detected(<0.1 mg/L) in all the samples. However, the nitrate was detected in the range of 0.1~4.9 mg/L in rain, 9.8~19.8 mg/L in milk, and 80~300 mg/L in infant formula, respectively. Some content of nitrate is close to the maximum contaminant level(MCL) which is 10 mg/L as $NO_3-N$, 44.3 mg/L as $NO_3$.

  • PDF

Hydrogeochemistry and Occurrences of Uranium and Radon in Groundwater of Mungyeong Area (문경지역 지하수의 수리지화학 및 우라늄과 라돈의 산출 특성)

  • Lee, Byeongdae;Cho, Byung Uk;Kim, Moon Su;Hwang, Jae Hong
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.553-566
    • /
    • 2018
  • The occurrence of natural radionuclides like uranium and radon in groundwater was hydrochemically examined based on 40 well groundwaters in Mungyeong area. The range of electrical conductivity (EC) value in the study area was $68{\sim}574{\mu}S/cm$. In addition to the increase of EC value, the content of cations and anions also tends to increase. Uranium concentrations ranged from $0.03{\sim}169{\mu}g/L$ (median value, $0.82{\mu}g/L$) and radon concentrations ranged from 70~30,700 pCi/L (median value, 955 pCi/L). Only 1 out of 40 wells (2.5%) showed uranium concentration exceeding the maximum contaminant level (MCL; $30{\mu}g/L$) proposed by the US Environmental Protection Agency (EPA). Radon concentrations of eight wells (20%) exceeded AMCL(Alternative maximum contaminant level) of the US EPA (4,000 pCi/L). Four out of those eight wells even exceeded Finland's guideline level (8,100 pCi/L). When concentrations of uranium and radon were investigated in terms of geology, the highest values are generally associated with granite. The uranium and radon levels observed in this study are low in comparison to those of other countries with similar geological settings. It is likely that the measured value was lower than the actual content due to the inflow of shallow groundwater by the lack of casing and grouting.

A Study on Comparison of Risk Estimates Among Various Exposure Scenario of Several Volatile Organic Compounds in Tap Water (음용수중 휘발성 유기오염물질의 노출경로에 따른 위해도 추정치 비교연구)

  • Chung, Yong;Shin, Dong-Chun;Kim, Jong-Man;Yang, Ji-Yeon;Park, Seong-Eun
    • Environmental Analysis Health and Toxicology
    • /
    • v.10 no.1_2
    • /
    • pp.21-35
    • /
    • 1995
  • Risk assessment processes, which include processes for the estimation of human cancer potency using animal bioassay data and calculation of human exposure, entail uncertainties. In the exposure assessment process, exposure scenarios with various assumptions could affect the exposure amount and excess cancer risk. We compared risk estimates among various exposure scenarios of vinyl chloride, trichloroethylene and tetrachloroethylene in tap water. The contaminant concentrations were analyzed from tap water samples in Seoul from 1993 to 1994. The oral and inhalation cancer potencies of the contaminants were estimated using multistage, Weibull, lognormal, and Mantel-Bryan model in TOX-RISK computer software. In the first case, human excess cancer risk was estimated by the US EPA method used to set the MCL(maximum contaminant level). In the second and third case, the risk was estimated for multi-route exposure with and without adopting Monte-Carlo simulation, respectively. In the second case, exposure input parameters and cancer potencies used probability distributions, and in the third case, those values used point estimates(mean, and maximum or 95% upper-bound value). As a result, while the excess cancer risk estimated by US EPA method considering only direct ingestion tended to be underestimated, the risk which was estimated by considering multi-route exposure without Monte-Carlo simulation and then using the maximum or 95% upper-bound value as input parameters tended to be overestimated. In risk assessment for volatile organic compounds, considering multi-route exposure with adopting Monte-Carlo analysis seems to provide the most reasonable estimations.

  • PDF

Hydrogeochemistry and Occurrences of Natural Radionuclides Uranium and Radon in Groundwater of Wonju Area (원주지역 지하수의 자연방사성물질 우라늄과 라돈의 산출 특성과 수리지화학)

  • Lee, Byeongdae;Cho, Byung Uk;Moon, Hee Sun;Hwang, Jae Hong
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.495-508
    • /
    • 2019
  • We measured the concentrations of natural radionuclides (uranium and radon) and major elements in groundwater collected from forty wells located in Wonju area to investigate the hydrochemistry and the occurrence of these radionuclides. The range of electrical conductivity (EC) value in the study area was 73~400 μS/cm. In addition to the increase of EC value, the content of cations and anions also tends to increase. Uranium concentrations ranged from 0.06~50.5 ㎍/L (median value, 1.55 ㎍/L) and radon concentrations ranged from 67~8,410 pCi/L (median value, 1,915 pCi/L). Uranium concentrations in 3 well, 7.5% of the samples, exceeded 30 ㎍/L, the maximum contaminant level (MCL) proposed by the US Environmental Protection Agency (EPA), based on the chemical toxicity of uranium. Radon concentrations in 9 wells, 22.5% of the samples, and 1 well, 2.2% of the samples, exceeded 4,000 pCi/L (AMCL of the US EPA) and 8,100 pCi/L (Finland's guideline level), respectively. Concentrations of uranium and radon related to geology of the study area showd the highest values in groundwater of the biotite granite area. Uranium and radon contents in the groundwater are comparatively low compared to those in other countries with similar geological settings. It is likely that the measured value was lower than the actual content due to the inflow of shallow groundwater by the lack of casing and grouting.