References
- F. Zahran, H.H. El-Maghrabi, G. Hussein, S.M. Abdelmaged, Fabrication of bentonite based nanocomposite as a novel low cost adsorbent for uranium ion removal, Environ. Nanotechnology, Monit. Manag. 11 (2019) 100205, https://doi.org/10.1016/j.enmm.2018.100205.
- X. Zhang, P. Gu, Y. Liu, Decontamination of radioactive wastewater: state of the art and challenges forward, Chemosphere 215 (2019) 543-553, https://doi.org/10.1016/j.chemosphere.2018.10.029.
- D. Shao, G. Hou, J. Li, T. Wen, X. Ren, X. Wang, PANI/GO as a super adsorbent for the selective adsorption of uranium(VI), Chem. Eng. J. 255 (2014) 604-612, https://doi.org/10.1016/j.cej.2014.06.063.
- C. Zhao, J. Liu, G. Yuan, J. Liu, H. Zhang, J. Yang, Y. Yang, N. Liu, Q. Sun, J. Liao, A novel activated sludge-graphene oxide composites for the removal of uranium(VI) from aqueous solutions, J. Mol. Liq. 271 (2018) 786-794, https://doi.org/10.1016/j.molliq.2018.09.069.
- N. Kolhe, S. Zinjarde, C. Acharya, Responses exhibited by various microbial groups relevant to uranium exposure, Biotechnol. Adv. 36 (2018) 1828-1846, https://doi.org/10.1016/j.biotechadv.2018.07.002.
- J. Grenthe, T. Drozdzynski, E.C. Fujino, T.E. Buck, S.F. Albrecht-Schmitt, S.F. Wolf, L.R. Morss, N.M. Edelstein, J. Fuger, Uranium, in: L.R. Morss, N. Edelstein, J. Fuger, J.J. Katz (Eds.), Chem. Actin. Trasnactinide Elem., third ed., Springer Netherlands, 2006, pp. 253-698, https://doi.org/10.1007/1-4020-3598-5.
- M.D. Tucker, L.L. Barton, B.M. Thomson, Reduction of Cr, Mo, Se and U by Desulfovibrio desulfuricans immobilized in polyacrylamide gels, J. Ind. Microbiol. Biotechnol. 20 (1998) 13-19, https://doi.org/10.1038/sj.jim.2900472.
- P. Zaheri, R. Davarkhah, Rapid removal of uranium from aqueous solution by emulsion liquid membrane containing thenoyltrifluoroacetone, J. Environ. Chem. Eng. 5 (2017) 4064-4068, https://doi.org/10.1016/j.jece.2017.07.076.
- M. Ghasemi Torkabad, A.R. Keshtkar, S.J. Safdari, Comparison of polyethersulfone and polyamide nanofiltration membranes for uranium removal from aqueous solution, Prog. Nucl. Energy 94 (2017) 93-100, https://doi.org/10.1016/j.pnucene.2016.10.005.
- E. Nariyan, M. Sillanpaa, C. Wolkersdorfer, Uranium removal from Pyhasalmi/Finland mine water by batch electrocoagulation and optimization with the response surface methodology, Separ. Purif. Technol. 193 (2018) 386-397, https://doi.org/10.1016/j.seppur.2017.10.020.
- F. Akbal, S. Camci, Comparison of electrocoagulation and chemical coagulation for heavy metal removal, Chem. Eng. Technol. 33 (2010) 1655-1664, https://doi.org/10.1002/ceat.201000091.
- S. Garcia-Segura, M.M.S.G. Eiband, J.V. de Melo, C.A. Martinez-Huitle, Electrocoagulation and advanced electrocoagulation processes: a general review about the fundamentals, emerging applications and its association with other technologies, J. Electroanal. Chem. 801 (2017) 267-299, https://doi.org/10.1016/j.jelechem.2017.07.047.
- M. Al-Shannag, Z. Al-Qodah, K. Bani-Melhem, M.R. Qtaishat, M. Alkasrawi, Heavy metal ions removal from metal plating wastewater using electrocoagulation: kinetic study and process performance, Chem. Eng. J. 260 (2015) 749-756, https://doi.org/10.1016/j.cej.2014.09.035.
- B. Al Aji, Y. Yavuz, A.S. Koparal, Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes, Separ. Purif. Technol. 86 (2012) 248-254, https://doi.org/10.1016/j.seppur.2011.11.011.
- Z. Zaroual, M. Azzi, N. Saib, E. Chainet, Contribution to the study of electrocoagulation mechanism in basic textile effluent, J. Hazard Mater. 131 (2006) 73-78, https://doi.org/10.1016/j.jhazmat.2005.09.021.
- S. Khansorthong, M. Hunsom, Remediation of wastewater from pulp and paper mill industry by the electrochemical technique, Chem. Eng. J. 151 (2009) 228-234, https://doi.org/10.1016/j.cej.2009.02.038.
- M. Panizza, C. Bocca, G. Cerisola, Electrochemical treatment of wastewater containing polyaromatic organic pollutants, Water Res. 34 (2000) 2601-2605, https://doi.org/10.1016/S0043-1354(00)00145-7.
- Y. Yavuz, EC and EF processes for the treatment of alcohol distillery wastewater, Separ. Purif. Technol. 53 (2007) 135-140, https://doi.org/10.1016/j.seppur.2006.08.022.
- B.M. Belongia, Treatment of alumina and silica chemical mechanical polishing waste by electrodecantation and electrocoagulation, J. Electrochem. Soc. 146 (1999) 4124-4130, https://doi.org/10.1149/1.1392602.
- M. Basri, R.N.Z.R.A. Rahman, A. Ebrahimpour, A.B. Salleh, E.R. Gunawan, M.B.A. Rahman, Comparison of estimation capabilities of response surface methodology (RSM) with artificial neural network (ANN) in lipase-catalyzed synthesis of palm-based wax ester, BMC Biotechnol. 53 (2007) 1, https://doi.org/10.1186/1472-6750-7-53.
- C. Xu, J. Wang, T. Yang, X. Chen, X. Liu, X. Ding, Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile, using response surface methodology, Carbohydr. Polym. 121 (2015) 79-85, https://doi.org/10.1016/j.carbpol.2014.12.024.
- Y. Ding, M. Sartaj, Statistical analysis and optimization of ammonia removal from aqueous solution by zeolite using factorial design and response surface methodology, J. Environ. Chem. Eng. 3 (2015) 807-814, https://doi.org/10.1016/j.jece.2015.03.025.
- J. Cao, Y. Wu, Y. Jin, P. Yilihan, W. Huang, Response surface methodology approach for optimization of the removal of chromium(VI) by NH2-MCM-41, J. Taiwan Inst. Chem. Eng. 45 (2014) 860-868, https://doi.org/10.1016/j.jtice.2013.09.011.
- A.L. Ahmad, S.C. Low, S.R. Abd Shukor, A. Ismail, Optimization of membrane performance by thermal-mechanical stretching process using responses surface methodology (RSM), Separ. Purif. Technol. 66 (2009) 177-186, https://doi.org/10.1016/j.seppur.2008.11.007.
- A. Hsu, A. de Sherbinin, H. Shi, Seeking truth from facts: the challenge of environmental indicator development in China, Environ. Dev. 3 (2012) 39-51, https://doi.org/10.1016/j.envdev.2012.05.001.
- L.A. Zadeh, Fuzzy sets, Inf. Control 8 (1965) 338-353, https://doi.org/10.1016/S0019-9958(65)90241-X.
- J.M. Mendel, Fuzzy logic systems for engineering: a tutorial, Proc. IEEE 83 (1995) 345-377, https://doi.org/10.1109/5.364485.
- M. Nasr, M. Moustafa, H. Seif, G. El-Kobrosy, Application of fuzzy logic control for Benchmark simulation model 1, Sustain. Environ. Res. 24 (2014) 235-243.
- M. Sami, M.J. Shiekhdavoodi, M. Pazhohanniya, F. Pazhohanniya, Environmental comprehensive assessment of agricultural systems at the farm level using fuzzy logic: a case study in cane farms in Iran, Environ. Model. Softw 58 (2014) 95-108, https://doi.org/10.1016/j.envsoft.2014.02.014.
- E. Yel, S. Yalpir, Prediction of primary treatment effluent parameters by Fuzzy Inference System (FIS) approach, Procedia Comput. Sci. 3 (2011) 659-665, https://doi.org/10.1016/j.procs.2010.12.110.
- A.A. Nadiri, N. Chitsazan, F.T.-C. Tsai, A.A. Moghaddam, Bayesian artificial intelligence model averaging for hydraulic conductivity estimation, J. Hydrol. Eng. 19 (2013) 520-532, https://doi.org/10.1061/(asce)he.1943-5584.0000824.
- K. Yetilmezsoy, S.A. Abdul-Wahab, A prognostic approach based on fuzzylogic methodology to forecast PM 10 levels in Khaldiya residential area, Kuwait, Aerosol Air Qual. Res. 12 (2012) 1217-1236, https://doi.org/10.4209/aaqr.2012.07.0163.
- World Energy Council, Country profiles, in: World Energy Counc. - 2018 Energy Trilemma Index, World Energy Council, 2018, pp. 60-144, in partnership with Oliver Wyman, London, United Kingdom, 2018, www.worldenergy.org.
- F. Zhang, J. Cheng, Verification of fuzzy UML models with fuzzy Description Logic, Appl. Soft Comput. J. 73 (2018) 134-152, https://doi.org/10.1016/j.asoc.2018.08.025.
- D. Pirouzan, M. Yahyaei, S. Banisi, Pareto based optimization of flotation cells configuration using an oriented genetic algorithm, Int. J. Miner. Process. 126 (2014) 107-116, https://doi.org/10.1016/j.minpro.2013.12.001.
- K.B. Aviso, R.R. Tan, A.B. Culaba, J.B. Cruz, Bi-level fuzzy optimization approach for water exchange in eco-industrial parks, Process Saf. Environ. Prot. 88 (2010) 31-40, https://doi.org/10.1016/j.psep.2009.11.003.
- E. Czogala, H.-J. Zimmermann, Decision making in uncertain environments, Eur. J. Oper. Res. 23 (1986) 202-212. http://www.sciencedirect.com/science/article/pii/0377221786902390. https://doi.org/10.1016/0377-2217(86)90239-0
- A.E.S. Choi, S. Roces, N. Dugos, M.W. Wan, Operating cost study through a Pareto-optimal fuzzy analysis using commercial ferrate (VI) in an ultrasound-assisted oxidative desulfurization of model sulfur compounds, Clean Technol. Environ. Policy 18 (2016) 1433-1441, https://doi.org/10.1007/s10098-015-1079-6.
- A.K. Verma, Treatment of textile wastewaters by electrocoagulation employing Fe-Al composite electrode, J. Water Process Eng. 20 (2017) 168-172, https://doi.org/10.1016/j.jwpe.2017.11.001.
- M. Nasrullah, A.W. Zularisam, S. Krishnan, M. Sakinah, L. Singh, Y.W. Fen, High performance electrocoagulation process in treating palm oil mill effluent using high current intensity application, Chin. J. Chem. Eng. (2018), https://doi.org/10.1016/j.cjche.2018.07.021.
- M. Hernandez-Ortega, T. Ponziak, C. Barrera-Diaz, M.A. Rodrigo, G. Roa-Morales, B. Bilyeu, Use of a combined electrocoagulation-ozone process as a pre-treatment for industrial wastewater, Desalination 250 (2010) 144-149, https://doi.org/10.1016/j.desal.2008.11.021.
- H.K. Hansen, S.F. Pena, C. Gutierrez, A. Lazo, P. Lazo, L.M. Ottosen, Selenium removal from petroleum refinery wastewater using an electrocoagulation technique, J. Hazard Mater. 364 (2019) 78-81, https://doi.org/10.1016/j.jhazmat.2018.09.090.
- M. Kobya, E. Demirbas, Evaluations of operating parameters on treatment of can manufacturing wastewater by electrocoagulation, J. Water Process Eng. 8 (2015) 64-74, https://doi.org/10.1016/j.jwpe.2015.09.006.
- A. Cerqueira, C. Russo, M.R.C. Marques, Electroflocculation for textile wastewater treatment, Braz. J. Chem. Eng. 26 (2009) 659-668, https://doi.org/10.1590/S0104-66322009000400004.
- P. Holt, G. Barton, C. Mitchell, Electrocoagulation as a wastewater treatment, in: Third Annu. Aust. Environ, Eng. Res. Event, 1999, pp. 1-6.
- E. Nariyan, M. Sillanpaa, C. Wolkersdorfer, Electrocoagulation treatment of mine water from the deepest working European metal mine - performance, isotherm and kinetic studies, Separ. Purif. Technol. 177 (2017) 363-373, https://doi.org/10.1016/j.seppur.2016.12.042.
- S. Lim, J. Zhu, Integrated data envelopment analysis: global vs. local optimum, Eur. J. Oper. Res. 229 (2013) 276-278, https://doi.org/10.1016/j.ejor.2013.02.023.
- E. Nariyan, A. Aghababaei, M. Sillanpaa, Removal of pharmaceutical from water with an electrocoagulation process; effect of various parameters and studies of isotherm and kinetic, Separ. Purif. Technol. 188 (2017) 266-281, https://doi.org/10.1016/j.seppur.2017.07.031.
- B. Wen, H. Li, An approach to formulation of FNLP with complex piecewise linear membership functions, Chin. J. Chem. Eng. 22 (2014) 411-417, https://doi.org/10.1016/S1004-9541(14)60039-2.
- W. Shin, J. Oh, S. Choung, B.W. Cho, K.S. Lee, U. Yun, N.C. Woo, H.K. Kim, Distribution and potential health risk of groundwater uranium in Korea, Chemosphere 163 (2016) 108-115, https://doi.org/10.1016/j.chemosphere.2016.08.021.
- J. Duan, J. Gregory, Coagulation by hydrolysing metal salts, Adv. Colloid Interface Sci. 100-102 (2003) 475-502. https://doi.org/10.1016/S0001-8686(02)00067-2
- Tetra Tech EM Inc, General Environmental Corporation; CURE Electrocoagulation Technology: Innovative Technology Evaluation Report, Cincinnati, 1998. EPA/540/R-96/502.
Cited by
- Fuzzy Optimization for the Remediation of Ammonia: A Case Study Based on Electrochemical Oxidation vol.18, pp.6, 2021, https://doi.org/10.3390/ijerph18062986
- A systematic diagnosis of state of the art in the use of electrocoagulation as a sustainable technology for pollutant treatment: An updated review vol.47, 2020, https://doi.org/10.1016/j.seta.2021.101353
- Fabrication of amidoxime-appended UiO-66 for the efficient and rapid removal of U(VI) from aqueous solution vol.329, 2020, https://doi.org/10.1016/j.micromeso.2021.111511