DOI QR코드

DOI QR Code

Fuzzy optimization for the removal of uranium from mine water using batch electrocoagulation: A case study

  • Received : 2019.05.24
  • Accepted : 2019.12.16
  • Published : 2020.07.25

Abstract

This research presents a case study on the remediation of a radioactive waste (uranium: U) utilizing a multi-objective fuzzy optimization in an electrocoagulation process for the iron-stainless steel and aluminum-stainless steel anode/cathode systems. The incorporation of the cumulative uncertainty of result, operational cost and energy consumption are essential key elements in determining the feasibility of the developed model equations in satisfying specific maximum contaminant level (MCL) required by stringent environmental regulations worldwide. Pareto-optimal solutions showed that the iron system (0 ㎍/L U: 492 USD/g-U) outperformed the aluminum system (96 ㎍/L U: 747 USD/g-U) in terms of the retained uranium concentration and energy consumption. Thus, the iron system was further carried out in a multi-objective analysis due to its feasibility in satisfying various uranium standard regulatory limits. Based on the 30 ㎍/L MCL, the decision-making process via fuzzy logic showed an overall satisfaction of 6.1% at a treatment time and current density of 101.6 min and 59.9 mA/㎠, respectively. The fuzzy optimal solution reveals the following: uranium concentration - 5 ㎍/L, cumulative uncertainty - 25 ㎍/L, energy consumption - 461.7 kWh/g-U and operational cost based on electricity cost in the United States - 60.0 USD/g-U, South Korea - 55.4 USD/g-U and Finland - 78.5 USD/g-U.

Keywords

References

  1. F. Zahran, H.H. El-Maghrabi, G. Hussein, S.M. Abdelmaged, Fabrication of bentonite based nanocomposite as a novel low cost adsorbent for uranium ion removal, Environ. Nanotechnology, Monit. Manag. 11 (2019) 100205, https://doi.org/10.1016/j.enmm.2018.100205.
  2. X. Zhang, P. Gu, Y. Liu, Decontamination of radioactive wastewater: state of the art and challenges forward, Chemosphere 215 (2019) 543-553, https://doi.org/10.1016/j.chemosphere.2018.10.029.
  3. D. Shao, G. Hou, J. Li, T. Wen, X. Ren, X. Wang, PANI/GO as a super adsorbent for the selective adsorption of uranium(VI), Chem. Eng. J. 255 (2014) 604-612, https://doi.org/10.1016/j.cej.2014.06.063.
  4. C. Zhao, J. Liu, G. Yuan, J. Liu, H. Zhang, J. Yang, Y. Yang, N. Liu, Q. Sun, J. Liao, A novel activated sludge-graphene oxide composites for the removal of uranium(VI) from aqueous solutions, J. Mol. Liq. 271 (2018) 786-794, https://doi.org/10.1016/j.molliq.2018.09.069.
  5. N. Kolhe, S. Zinjarde, C. Acharya, Responses exhibited by various microbial groups relevant to uranium exposure, Biotechnol. Adv. 36 (2018) 1828-1846, https://doi.org/10.1016/j.biotechadv.2018.07.002.
  6. J. Grenthe, T. Drozdzynski, E.C. Fujino, T.E. Buck, S.F. Albrecht-Schmitt, S.F. Wolf, L.R. Morss, N.M. Edelstein, J. Fuger, Uranium, in: L.R. Morss, N. Edelstein, J. Fuger, J.J. Katz (Eds.), Chem. Actin. Trasnactinide Elem., third ed., Springer Netherlands, 2006, pp. 253-698, https://doi.org/10.1007/1-4020-3598-5.
  7. M.D. Tucker, L.L. Barton, B.M. Thomson, Reduction of Cr, Mo, Se and U by Desulfovibrio desulfuricans immobilized in polyacrylamide gels, J. Ind. Microbiol. Biotechnol. 20 (1998) 13-19, https://doi.org/10.1038/sj.jim.2900472.
  8. P. Zaheri, R. Davarkhah, Rapid removal of uranium from aqueous solution by emulsion liquid membrane containing thenoyltrifluoroacetone, J. Environ. Chem. Eng. 5 (2017) 4064-4068, https://doi.org/10.1016/j.jece.2017.07.076.
  9. M. Ghasemi Torkabad, A.R. Keshtkar, S.J. Safdari, Comparison of polyethersulfone and polyamide nanofiltration membranes for uranium removal from aqueous solution, Prog. Nucl. Energy 94 (2017) 93-100, https://doi.org/10.1016/j.pnucene.2016.10.005.
  10. E. Nariyan, M. Sillanpaa, C. Wolkersdorfer, Uranium removal from Pyhasalmi/Finland mine water by batch electrocoagulation and optimization with the response surface methodology, Separ. Purif. Technol. 193 (2018) 386-397, https://doi.org/10.1016/j.seppur.2017.10.020.
  11. F. Akbal, S. Camci, Comparison of electrocoagulation and chemical coagulation for heavy metal removal, Chem. Eng. Technol. 33 (2010) 1655-1664, https://doi.org/10.1002/ceat.201000091.
  12. S. Garcia-Segura, M.M.S.G. Eiband, J.V. de Melo, C.A. Martinez-Huitle, Electrocoagulation and advanced electrocoagulation processes: a general review about the fundamentals, emerging applications and its association with other technologies, J. Electroanal. Chem. 801 (2017) 267-299, https://doi.org/10.1016/j.jelechem.2017.07.047.
  13. M. Al-Shannag, Z. Al-Qodah, K. Bani-Melhem, M.R. Qtaishat, M. Alkasrawi, Heavy metal ions removal from metal plating wastewater using electrocoagulation: kinetic study and process performance, Chem. Eng. J. 260 (2015) 749-756, https://doi.org/10.1016/j.cej.2014.09.035.
  14. B. Al Aji, Y. Yavuz, A.S. Koparal, Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes, Separ. Purif. Technol. 86 (2012) 248-254, https://doi.org/10.1016/j.seppur.2011.11.011.
  15. Z. Zaroual, M. Azzi, N. Saib, E. Chainet, Contribution to the study of electrocoagulation mechanism in basic textile effluent, J. Hazard Mater. 131 (2006) 73-78, https://doi.org/10.1016/j.jhazmat.2005.09.021.
  16. S. Khansorthong, M. Hunsom, Remediation of wastewater from pulp and paper mill industry by the electrochemical technique, Chem. Eng. J. 151 (2009) 228-234, https://doi.org/10.1016/j.cej.2009.02.038.
  17. M. Panizza, C. Bocca, G. Cerisola, Electrochemical treatment of wastewater containing polyaromatic organic pollutants, Water Res. 34 (2000) 2601-2605, https://doi.org/10.1016/S0043-1354(00)00145-7.
  18. Y. Yavuz, EC and EF processes for the treatment of alcohol distillery wastewater, Separ. Purif. Technol. 53 (2007) 135-140, https://doi.org/10.1016/j.seppur.2006.08.022.
  19. B.M. Belongia, Treatment of alumina and silica chemical mechanical polishing waste by electrodecantation and electrocoagulation, J. Electrochem. Soc. 146 (1999) 4124-4130, https://doi.org/10.1149/1.1392602.
  20. M. Basri, R.N.Z.R.A. Rahman, A. Ebrahimpour, A.B. Salleh, E.R. Gunawan, M.B.A. Rahman, Comparison of estimation capabilities of response surface methodology (RSM) with artificial neural network (ANN) in lipase-catalyzed synthesis of palm-based wax ester, BMC Biotechnol. 53 (2007) 1, https://doi.org/10.1186/1472-6750-7-53.
  21. C. Xu, J. Wang, T. Yang, X. Chen, X. Liu, X. Ding, Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile, using response surface methodology, Carbohydr. Polym. 121 (2015) 79-85, https://doi.org/10.1016/j.carbpol.2014.12.024.
  22. Y. Ding, M. Sartaj, Statistical analysis and optimization of ammonia removal from aqueous solution by zeolite using factorial design and response surface methodology, J. Environ. Chem. Eng. 3 (2015) 807-814, https://doi.org/10.1016/j.jece.2015.03.025.
  23. J. Cao, Y. Wu, Y. Jin, P. Yilihan, W. Huang, Response surface methodology approach for optimization of the removal of chromium(VI) by NH2-MCM-41, J. Taiwan Inst. Chem. Eng. 45 (2014) 860-868, https://doi.org/10.1016/j.jtice.2013.09.011.
  24. A.L. Ahmad, S.C. Low, S.R. Abd Shukor, A. Ismail, Optimization of membrane performance by thermal-mechanical stretching process using responses surface methodology (RSM), Separ. Purif. Technol. 66 (2009) 177-186, https://doi.org/10.1016/j.seppur.2008.11.007.
  25. A. Hsu, A. de Sherbinin, H. Shi, Seeking truth from facts: the challenge of environmental indicator development in China, Environ. Dev. 3 (2012) 39-51, https://doi.org/10.1016/j.envdev.2012.05.001.
  26. L.A. Zadeh, Fuzzy sets, Inf. Control 8 (1965) 338-353, https://doi.org/10.1016/S0019-9958(65)90241-X.
  27. J.M. Mendel, Fuzzy logic systems for engineering: a tutorial, Proc. IEEE 83 (1995) 345-377, https://doi.org/10.1109/5.364485.
  28. M. Nasr, M. Moustafa, H. Seif, G. El-Kobrosy, Application of fuzzy logic control for Benchmark simulation model 1, Sustain. Environ. Res. 24 (2014) 235-243.
  29. M. Sami, M.J. Shiekhdavoodi, M. Pazhohanniya, F. Pazhohanniya, Environmental comprehensive assessment of agricultural systems at the farm level using fuzzy logic: a case study in cane farms in Iran, Environ. Model. Softw 58 (2014) 95-108, https://doi.org/10.1016/j.envsoft.2014.02.014.
  30. E. Yel, S. Yalpir, Prediction of primary treatment effluent parameters by Fuzzy Inference System (FIS) approach, Procedia Comput. Sci. 3 (2011) 659-665, https://doi.org/10.1016/j.procs.2010.12.110.
  31. A.A. Nadiri, N. Chitsazan, F.T.-C. Tsai, A.A. Moghaddam, Bayesian artificial intelligence model averaging for hydraulic conductivity estimation, J. Hydrol. Eng. 19 (2013) 520-532, https://doi.org/10.1061/(asce)he.1943-5584.0000824.
  32. K. Yetilmezsoy, S.A. Abdul-Wahab, A prognostic approach based on fuzzylogic methodology to forecast PM 10 levels in Khaldiya residential area, Kuwait, Aerosol Air Qual. Res. 12 (2012) 1217-1236, https://doi.org/10.4209/aaqr.2012.07.0163.
  33. World Energy Council, Country profiles, in: World Energy Counc. - 2018 Energy Trilemma Index, World Energy Council, 2018, pp. 60-144, in partnership with Oliver Wyman, London, United Kingdom, 2018, www.worldenergy.org.
  34. F. Zhang, J. Cheng, Verification of fuzzy UML models with fuzzy Description Logic, Appl. Soft Comput. J. 73 (2018) 134-152, https://doi.org/10.1016/j.asoc.2018.08.025.
  35. D. Pirouzan, M. Yahyaei, S. Banisi, Pareto based optimization of flotation cells configuration using an oriented genetic algorithm, Int. J. Miner. Process. 126 (2014) 107-116, https://doi.org/10.1016/j.minpro.2013.12.001.
  36. K.B. Aviso, R.R. Tan, A.B. Culaba, J.B. Cruz, Bi-level fuzzy optimization approach for water exchange in eco-industrial parks, Process Saf. Environ. Prot. 88 (2010) 31-40, https://doi.org/10.1016/j.psep.2009.11.003.
  37. E. Czogala, H.-J. Zimmermann, Decision making in uncertain environments, Eur. J. Oper. Res. 23 (1986) 202-212. http://www.sciencedirect.com/science/article/pii/0377221786902390. https://doi.org/10.1016/0377-2217(86)90239-0
  38. A.E.S. Choi, S. Roces, N. Dugos, M.W. Wan, Operating cost study through a Pareto-optimal fuzzy analysis using commercial ferrate (VI) in an ultrasound-assisted oxidative desulfurization of model sulfur compounds, Clean Technol. Environ. Policy 18 (2016) 1433-1441, https://doi.org/10.1007/s10098-015-1079-6.
  39. A.K. Verma, Treatment of textile wastewaters by electrocoagulation employing Fe-Al composite electrode, J. Water Process Eng. 20 (2017) 168-172, https://doi.org/10.1016/j.jwpe.2017.11.001.
  40. M. Nasrullah, A.W. Zularisam, S. Krishnan, M. Sakinah, L. Singh, Y.W. Fen, High performance electrocoagulation process in treating palm oil mill effluent using high current intensity application, Chin. J. Chem. Eng. (2018), https://doi.org/10.1016/j.cjche.2018.07.021.
  41. M. Hernandez-Ortega, T. Ponziak, C. Barrera-Diaz, M.A. Rodrigo, G. Roa-Morales, B. Bilyeu, Use of a combined electrocoagulation-ozone process as a pre-treatment for industrial wastewater, Desalination 250 (2010) 144-149, https://doi.org/10.1016/j.desal.2008.11.021.
  42. H.K. Hansen, S.F. Pena, C. Gutierrez, A. Lazo, P. Lazo, L.M. Ottosen, Selenium removal from petroleum refinery wastewater using an electrocoagulation technique, J. Hazard Mater. 364 (2019) 78-81, https://doi.org/10.1016/j.jhazmat.2018.09.090.
  43. M. Kobya, E. Demirbas, Evaluations of operating parameters on treatment of can manufacturing wastewater by electrocoagulation, J. Water Process Eng. 8 (2015) 64-74, https://doi.org/10.1016/j.jwpe.2015.09.006.
  44. A. Cerqueira, C. Russo, M.R.C. Marques, Electroflocculation for textile wastewater treatment, Braz. J. Chem. Eng. 26 (2009) 659-668, https://doi.org/10.1590/S0104-66322009000400004.
  45. P. Holt, G. Barton, C. Mitchell, Electrocoagulation as a wastewater treatment, in: Third Annu. Aust. Environ, Eng. Res. Event, 1999, pp. 1-6.
  46. E. Nariyan, M. Sillanpaa, C. Wolkersdorfer, Electrocoagulation treatment of mine water from the deepest working European metal mine - performance, isotherm and kinetic studies, Separ. Purif. Technol. 177 (2017) 363-373, https://doi.org/10.1016/j.seppur.2016.12.042.
  47. S. Lim, J. Zhu, Integrated data envelopment analysis: global vs. local optimum, Eur. J. Oper. Res. 229 (2013) 276-278, https://doi.org/10.1016/j.ejor.2013.02.023.
  48. E. Nariyan, A. Aghababaei, M. Sillanpaa, Removal of pharmaceutical from water with an electrocoagulation process; effect of various parameters and studies of isotherm and kinetic, Separ. Purif. Technol. 188 (2017) 266-281, https://doi.org/10.1016/j.seppur.2017.07.031.
  49. B. Wen, H. Li, An approach to formulation of FNLP with complex piecewise linear membership functions, Chin. J. Chem. Eng. 22 (2014) 411-417, https://doi.org/10.1016/S1004-9541(14)60039-2.
  50. W. Shin, J. Oh, S. Choung, B.W. Cho, K.S. Lee, U. Yun, N.C. Woo, H.K. Kim, Distribution and potential health risk of groundwater uranium in Korea, Chemosphere 163 (2016) 108-115, https://doi.org/10.1016/j.chemosphere.2016.08.021.
  51. J. Duan, J. Gregory, Coagulation by hydrolysing metal salts, Adv. Colloid Interface Sci. 100-102 (2003) 475-502. https://doi.org/10.1016/S0001-8686(02)00067-2
  52. Tetra Tech EM Inc, General Environmental Corporation; CURE Electrocoagulation Technology: Innovative Technology Evaluation Report, Cincinnati, 1998. EPA/540/R-96/502.

Cited by

  1. Fuzzy Optimization for the Remediation of Ammonia: A Case Study Based on Electrochemical Oxidation vol.18, pp.6, 2021, https://doi.org/10.3390/ijerph18062986
  2. A systematic diagnosis of state of the art in the use of electrocoagulation as a sustainable technology for pollutant treatment: An updated review vol.47, 2020, https://doi.org/10.1016/j.seta.2021.101353
  3. Fabrication of amidoxime-appended UiO-66 for the efficient and rapid removal of U(VI) from aqueous solution vol.329, 2020, https://doi.org/10.1016/j.micromeso.2021.111511