• 제목/요약/키워드: Maximum Stress Intensity Factor

검색결과 137건 처리시간 0.026초

폴리머재료의 파괴인성치에 관한 연구 (A study on the Dynamic Fracture Toughness for Polymeric Materials)

  • 최영식;박명균
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2001년도 춘계학술대회
    • /
    • pp.311-317
    • /
    • 2001
  • The notched Charpy and Izod impact tests are the most prevalent techniques used to characterize the effects of high impulse loads on ploymeric materials. An analysis method for rubber toughened PVC is suggested to evaluate critical strain energy release rates(Gc) from the Charpy impact energy measurements. An Instrumented Charpy Impact tester was used to extract ancillary information concerning fracture properties in addition to total fracture properties and maximum critical loads. The stress intensity factor Kd was computed for varying amounts of rubber contents from the obtained maximum critical loads and also toughening effects were investigated as well.

  • PDF

Reliability Improvement of Offshore Structural Steel F690 Using Surface Crack Nondamaging Technology

  • Lee, Weon-Gu;Gu, Kyoung-Hee;Kim, Cheol-Su;Nam, Ki-Woo
    • 한국해양공학회지
    • /
    • 제35권5호
    • /
    • pp.327-335
    • /
    • 2021
  • Microcracks can rapidly grow and develop in high-strength steels used in offshore structures. It is important to render these microcracks harmless to ensure the safety and reliability of offshore structures. Here, the dependence of the aspect ratio (As) of the maximum depth of harmless crack (ahlm) was evaluated under three different conditions considering the threshold stress intensity factor (Δkth) and residual stress of offshore structural steel F690. The threshold stress intensity factor and fatigue limit of fatigue crack propagation, dependent on crack dimensions, were evaluated using Ando's equation, which considers the plastic behavior of fatigue and the stress ratio. ahlm by peening was analyzed using the relationship between Δkth obtained by Ando's equation and Δkth obtained by the sum of applied stress and residual stress. The plate specimen had a width 2W = 12 mm and thickness t = 20 mm, and four value of As were considered: 1.0, 0.6, 0.3, and 0.1. The ahlm was larger as the compressive residual stress distribution increased. Additionally, an increase in the values of As and Δkth(l) led to a larger ahlm. With a safety factor (N) of 2.0, the long-term safety and reliability of structures constructed using F690 can be secured with needle peening. It is necessary to apply a more sensitive non-destructive inspection technique as a non-destructive inspection method for crack detection could not be used to observe fatigue cracks that reduced the fatigue limit of smooth specimens by 50% in the three types of residual stresses considered. The usefulness of non-destructive inspection and non-damaging techniques was reviewed based on the relationship between ahlm, aNDI (minimum crack depth detectable in non-destructive inspection), acr N (crack depth that reduces the fatigue limit to 1/N), and As.

유한요소법과 샤피충격시험기에 의한 노치각도에 따른 나일론 열가소성 플라스틱 재료의 파괴특성 (Dynamic Fracture Properties of Nylon Thermoplastic Material Depending on Notch Angle with Charpy Impact Machine and Finite Element Method)

  • 박명균;이중원;김태옥
    • 한국가스학회지
    • /
    • 제12권1호
    • /
    • pp.1-6
    • /
    • 2008
  • 샤피충격시험은 동적하중 하에 있는 고분자 재료의 거동을 이해하는데 가장 널리 사용되고 있는 방법이다. 본 연구에서는 샤피충격시험장치에서 얻어지는 파단에너지를 사용하여 나일론 소재 샤피 시편의 노치각도에 따른 에너지 해방율을 구하는 방법을 제시하였다. 또한 샤피충격시험장치를 계장화하여 최대 하중과 파단 시까지 소요되는 에너지 등의 파손인자들을 산출하였다. 그리고 노치각도에 따른 동적파괴 인성치와 유한요소법을 사용하여 중앙집중 하중 하에서 사피 시편의 노치각도에 따른 응력분포를 산출하였다.

  • PDF

On the mixed-mode crack propagation in FGMs plates: comparison of different criteria

  • Nabil, Benamara;Abdelkader, Boulenouar;Miloud, Aminallah;Noureddine, Benseddiq
    • Structural Engineering and Mechanics
    • /
    • 제61권3호
    • /
    • pp.371-379
    • /
    • 2017
  • Modelling of a crack propagating through a finite element mesh under mixed mode conditions is of prime importance in fracture mechanics. In this paper, two crack growth criteria and the respective crack paths prediction in functionally graded materials (FGM) are compared. The maximum tangential stress criterion (${\sigma}_{\theta}-criterion$) and the minimum strain energy density criterion (S-criterion) are investigated using advanced finite element technique. Using Ansys Parametric Design Language (APDL), the variation continues in the material properties are incorporated into the model by specifying the material parameters at the centroid of each finite element. In this paper, the displacement extrapolation technique (DET) proposed for homogeneous materials is modified and investigated, to obtain the stress intensity factors (SIFs) at crack-tip in FGMs. Several examples are modeled to evaluate the accuracy and effectiveness of the combined procedure. The effect of the defects on the crack propagation in FGMs was highlighted.

스프링강의 피로파괴에 미치는 압축잔류응력의 영향 (A Study on the effect of Compressive residual stress on fatigue crack propagation behavior of the spring steel)

  • 진영범;박경동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.348-352
    • /
    • 2004
  • Recently the steel parts used for automiles and trains are required to be used under higher stress than ever before in need of the weight down. However, threr are a lot of problems with developing such of fatigue strength and fatigue life are mainly focused on by adopting residual stress. And got the following characteristics from crack growth test carried out stress ratio. Fatigue life shows more improvement in the Un-peening material. And Compressive residual stress of surface on the Shot-peening processed operate resistance force of fatigue. So we cam obtain fallowings. (1) The fatigue crack growth rate on stage II is conspicuous with the size of compressive residual stress and is dependent of Paris equation. (2) Although the maximum compressive residual stress is deeply and widely formed from surface, fatigue life does not improve than when maximum compressive residual stress is formed in surface. (3) The threshold stress intensity factor range is increased with increasing compressive residual stress.

  • PDF

마찰열에 의한 반무한체 표면균열의 전파특성 (Propagation Characteristics of a Surface Crack on a Semi-Infinite Body Due to Frictional Heating)

  • 박준목;이은호;김재호;김석삼
    • 대한기계학회논문집A
    • /
    • 제20권10호
    • /
    • pp.3126-3134
    • /
    • 1996
  • In this paper, to examine the propagation of inclined surface crack due to frictional heating, analytic model is considered as the semi-infinite elastic body subjected to the thermo-mechanical loading of an asperity moving with a high speed. Considering the moving of frictional heat source and convection on a semi-infinite surface having inclined crack, theoretical analysis was carried out to estimate the propagation characteristics of thermo-mechanical crack. Numerical results showed that stress intensity factor $K_\prod/P_0\sqrt{c}$ is increasing with increasing velocity and frictional coefficient, inclined degree, decreasing crack length and the maximum value of it is positioned at the trailing edge. So it is shown that the propagation probability of surface crack is high at the trailing edge of contact area as increasing velocity and frictional coefficient, inclined degree, as decreasing crack length.

축단면 내 대칭위치에 존재하는 원공결함에서 발생하는 피로균열 거동 (The Characteristics of Fatigue Cracks Emanating from Small Hole Defects Located Opposite Position of the Shaft Cross Section)

  • 송삼홍;안일혁;이정무
    • 한국정밀공학회지
    • /
    • 제19권10호
    • /
    • pp.84-91
    • /
    • 2002
  • The shaft with the circular cross section have symmetric structural combination parts to keep the rotating balance. Hence the crack usually emanate from symmetric combination parts due to the stress concentration of these parts. In this study to estimate the fatigue behavior of symmetric cracks, the fatigue test was performed by using rotary bending tester and the specimen with symmetric defects in circular cross section. From the facts the characteristics of crack initiation and propagation on the symmetric surface cracks in circular cross section was examined. Also we observed the internal crack using oxidation coloring and investigated the fatigue behavior using the relationship between surface crack and internal crack. As a result of fatigue lift of symmetric cracks was reduced to 35% compared to single crack’s. We examined the characteristics of fatigue behavior in element with symmetric cracks using internal crack propagation rate and maximum stress intensity factor range obtained from approximation method.

Behavioral Characteristics of Fatigue Cracks in Small Hole Defects Located on Opposite Sides of the Shaft Cross Section

  • Sam-Hong;Il-Hyuk;Jeong-Moo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권4호
    • /
    • pp.36-42
    • /
    • 2004
  • The shaft with the circular cross section has symmetric structural combination parts to keep the rotating balance. Hence the crack usually initiates from symmetric combination parts due to the stress concentration of these parts. In this study to estimate the fatigue behavior of symmetric cracks, the fatigue test was performed by using a rotary bending tester and the specimen with symmetric defects in circular cross section. The characteristics of crack initiation and propagation on the symmetric surface cracks in circular cross section were examined. We also observed the internal crack using the oxidation coloring method and investigated the fatigue behavior using the relationship between the surface crack and the internal crack. As a result, the fatigue life of symmetric cracks was reduced by 35% compared to that of a single crack. We examined the characteristics of fatigue behavior of elements with symmetric cracks using internal crack propagation rate and maximum stress intensity factor range that were obtained from an approximation method.

접촉피로에 의한 표면피팅의 유한요소 시뮬레이션 (Finite Element Simulation of Surface Pitting due to Contact Fatigue)

  • 이환우;김성훈
    • 한국정밀공학회지
    • /
    • 제27권3호
    • /
    • pp.80-88
    • /
    • 2010
  • A simple computational model for modeling of subsurface crack growth under cyclic contact loading is presented. In this model, it is assumed that the initial fatigue crack will initiate in the region of the maximum equivalent stress at certain depth under the contacting surface. The position and magnitude of the maximum equivalent stress are determined by using the equivalent contact model, which is based on the Hertzian contact conditions with frictional forces. The virtual crack extension method is used for simulation of the fatigue crack growth from the initial crack up to the formation of the surface pit due to contact fatigue. The relationships between the stress intensity factor and crack length are then determined for various combinations of equivalent contact radii and loadings.

혼합모드(I+II)하에서 균열길이 변화에 따른 피로균열 전파 거동 (Behaviour of Fatigue Crack Propagation under Mixed Mode(I+II) with variation of Crack Length)

  • 정의효;허방수;권윤기;오택열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.182-187
    • /
    • 2000
  • The application of fracture mechanics have traditionally concentrated on cracks leaded by tensile stresses, and growing under an opening or mode I mechanism. However, many cases of failures occur from growth of cracks subjected to mixed mode loading. Several criteria have been proposed regarding the crack growth direction under mixed mode loadings. This paper is aimed at prediction of fatigue crack growth behaviour under mixed mode(I+II) in two dimensional branched type precrack. In this paper, the maximum tangential stress(MTS) criterion was used to predict crack growth direction. Not only experiment but also finite element analysis(FEA) was carried out. The theoretical predictions were compared with experimental results in this paper

  • PDF