• Title/Summary/Keyword: Maximum Respiration Rate

Search Result 86, Processing Time 0.028 seconds

Nitrification process analysis by respirometry in a sequencing batch reactor (호흡률을 이용한 연속회분식반응조의 질산화 공정 해석)

  • Kim, Donghan;Kim, Sunghong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.55-62
    • /
    • 2019
  • The respirometric technique has been used to analyze the nitrification process in a sequencing batch reactor(SBR) treating municipal wastewater. Especially the profile of the respiration rate very well expressed the reaction characteristics of nitrification. As the nitrification process required a significant amount of oxygen for nitrogen oxidation, the respiration rate due to nitrification was high. The maximum nitrification respiration rate, which was about $50mg\;O_2/L{\cdot}h$ under the period of sufficient nitrification, was related directly to the nitrification reaction rate and showed the nitrifiers activity. The growth rate of nitrifiers is the most critical parameter in the design of the biological nutrient removal systems. On the basis of nitrification kinetics, the maximum specific growth rate of nitrifiers in the SBR was estimated as $0.91d^{-1}$ at $20^{\circ}C$, and the active biomass of nitrifiers was calculated as 23 mg VSS/L and it was about 2% of total biomass.

A Study on an Optimal Respiration Rate for the ANS Assessment based on RSA Analysis (RSA분석과 자율신경기능을 평가하는 호흡주기 설정에 관한 연구)

  • Lee, Sang-Myung;Lee, Sung-Jun;Ahn, Jae-Mok;Kim, Jeom-Keun
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.503-511
    • /
    • 2007
  • Heart rate variability(HRV) is the clinical consequence of various influences of the autonomic nervous system(ANS) on heart beat. HRV can estimate the potential physiologic rhythm from the interval between consecutive beats(RR interval or HRV data), but cardiovascular system governed by ANS is in relation to respiration and autonomic regulation. It is known as RSA representing respiration-related HR rhythmic oscillation. Because the mechanism linking the variability of HR to respiration is complex, it has so far been unknown well. In this paper, we tried to evaluate 5-min RR interval segments under control of respiration in order to find out a proper respiration rate that can estimate the ANS function. 10 healthy volunteers were included to evaluate 5-min HRV data under 4 different respiration-controlled environments; 0.03Hz, 0.1Hz, 0.2Hz, and 0.4Hz respiration. HRV data were analyzed both in the frequency and the time domain, with cross-correlation coefficient(cross-coeff.) for HRV and respiration signal. The results showed maximum cross-coeff. of 0.84 at 0.1 Hz and minimum that of 0.16 at 0.4Hz respiration. Cross-coeff was decreased at a faster rate from 0.1Hz respiration. All mean SDNN, RMSSD, and pNN50 of time domain measures were 108.7ms, 71.85ms, and 28.47%, respectively, and LF, HF, and TP of frequency domain measures were $12,722ms^2,\;658.8ms^2$, and $7,836.64ms^2$ at 0.1Hz respiration, respectively. In conclusion, 0.1Hz respiration was observed to be very meaningful from time domain and frequency domain analysis in relation to respiration and autonomic regulation of the heart.

Respiration Rate Estimation using IR-UWB Radar Signals Robust to Body-Rocking (인체 움직임에 강인한 IR-UWB 레이더 기반의 호흡속도추정)

  • Park, Hyung Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.49-54
    • /
    • 2012
  • This paper presents a novel respiration rate estimation method based on joint amplitude and time of arrival (TOA) using impulse-radio ultra-wideband (IR-UWB) radar signals. Through analysis of the affect of body-rocking, it is shown that body-rocking information does not distort the respiration rate and exists at integer multiples of the body-rocking rate from the respiration rate. Based on the analysis, the convolution of the temporal sequence of the maximum amplitude and that of the TOA is proposed. The analysis results show that the frequency components of respiration are improved more than 10dB compared with those obtained using other existing methods.

Aeration control based on respirometry in a sequencing batch reactor (호흡률에 기반한 연속회분식반응조의 포기공정 제어)

  • Kim, Donghan;Kim, Sunghong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • As the sequencing batch reactor process is a time-oriented system, it has advantages of the flexibility in operation for the biological nutrient removal. Because the sequencing batch reactor is operated in a batch system, respiration rate is more sensitive and obvious than in a continuous system. The variation of respiration rate in the process well represented the characteristics of biological reactions, especially nitrification. The respiration rate dropped rapidly and greatly with the completion of nitrification, and the maximum respiration rate of nitrification showed the activity of nitrifiers. This study suggested a strategy to control the aeration of the sequencing batch reactor based on respirometry. Aeration time of the optimal aerobic period required for nitrification was daily adjusted according to the dynamics of respiration rate. The aeration time was mainly correlated with influent nitrogen loadings. The anoxic period was extended through aeration control facilitating a longer endogenous denitrification reaction time. By respirometric aeration control in the sequencing batch reactor, energy saving and process performance improvement could be achieved.

Calibration of Activated Sludge Model No. 1 using Maximum Respiration Rate: Maximum Autotrophs Specific Growth Rate (최대 호흡율을 이용한 활성슬러지 모델 No.1 보정: 자가영양균 최대비성장율 추정)

  • Choi, E.H.;Buys, B.;Temmink, H.;Klapwijk, B.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.409-413
    • /
    • 2005
  • A method to estimate the autotrophic maximum specific growth rate is presented in this paper. First of all, the concentration of nitrifier is simulated based on the amount of N nitrified, the sludge age and the default value for the decay coefficient. Secondly the OUR of the sludge with access of ammonia is measured. The maximum specific growth rate can be calculated as ${\mu}_{max,A}\;=\;OUR_{max,A}/Y_A$. It was demonstrated that the maximum specific growth rate of autotrophic biomass is not a constants but a time variable parameter. It is concluded that using $OUR_{max,A}$ for dynamic estimating maximum specific growth rate is a good approach and that using a constant value for the maximum specific growth rate over a longer period of time could not predict the performance of activated sludge plants.

Predictive aeration control based on the respirometric method in a sequencing batch reactor (연속회분식반응조에서 호흡률에 기반한 포기공정의 예측제어)

  • Kim, Donghan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.6
    • /
    • pp.481-489
    • /
    • 2019
  • As aeration is an energy-intensive process, its control has become more important to save energy and to meet strict effluent limits. In this study, predictive aeration control based on the respirometric method has been applied to the sequencing batch reactor (SBR) process. The variation of the respiration rate by nitrification was great and obvious, so it could be a very useful parameter for the predictive aeration control. The maximum respiration rate due to nitrification was about 60 mg O2/L·h and the maximum specific nitrification rate was about 7.5 mg N/g MLVSS·h. The aeration time of the following cycle of the SBR was daily adjusted in proportion to that which was previously determined based on the sudden decrease of respiration rate at the end of nitrification in the respirometer. The aeration time required for nitrification could be effectively predicted and it was closely related to influent nitrogen loadings. By the predictive aeration control the aerobic period of the SBR has been optimized, and energy saving and enhanced nitrogen removal could be obtained.

Changes in Skin Temperature and Physiological Reactions in Murrah Buffalo During Solar Exposure in Summer

  • Das, S.K.;Upadhyay, R.C.;Madan, M.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.5
    • /
    • pp.478-483
    • /
    • 1997
  • Six adult female Murrah buffaloes of about 12 years were exposed to solar radiation during summer when minimum and maximum ambient temperatures were 27.1 and $44.1^{\circ}C$, respectively. The skin surface temperature at forehead, middle pinna, neck, rump, foreleg, hind legs were recorded using non-contact temperature measuring instrument and respiration rate and rectal temperature were measured throughout the 24 hours starting from 6:30 AM. The diurnal fluctuations and temperature gradients have been reported for buffaloes. During summer when ambient temperature and solar radiation was maximum, adult buffaloes were not able to maintain their thermal balance even after increasing the pulmonary frequency 5 - 6 times. The changes in skin temperature at various sites indicate that the temperature of skin surface not only varies in relation to exposure but also due to water diffusion and evaporation.

Studies on the Cellular Metabolism in Microorganisms as Influenced by Gamma-irradiation.(II) - On the Respiration Rate and Dehydrogenase Actibity in Yeast Cells Irradiated by $\gamma$-ray. (미생물의 세포생리에 미치는 전이방사선의 영향에 관한 연구 (제 2보) - 효모균의 산소호흡기및 탈수소효소능에 대한 $\gamma$-ray 의 영향)

  • 김종협
    • Korean Journal of Microbiology
    • /
    • v.5 no.2
    • /
    • pp.69-78
    • /
    • 1967
  • Kim, Jong Hyup, (Div. of Biology, Atomic Energy Research Institute.) Studies on the Cellular Metabolism in Microorganisms as influenced by Gamma-irradiation(II). On respiration rate and dehydrogenase activity of yeast cells irradiated by gamma ray from cobalt-60. 1. Oxygen uptake rate of the gamma irraiated yeast cells had been measured with Warburg's manometer, and the $O_{2}$-uptake was compared with those of normal cells. The rate of endogetious respiration increases in its $O_2$-uptake at 150, 000 rentgen dose, and at higher rentoen doses it was decreased. Exogenous respiration begin to decrease in its O_2$-uptake at 5, 000r. doses of irradiation, further decrease with increasing of doses unproportionally. 2. It appears that plasma-membrane and nuclear membrane of yeast cells have changed and denatured by gamma-irradiation, as exogenous respiration of glucose had been decreased at a dose of 200, 000r's irradiation. 3. The activity of glucose, alcoholic, lactic, succinic and glutamic deliydrogenase (G.D.H., A.D.H., L.D.H., S.D.11., and GL.D.H.) in the gamma irradaited cells had been assayed by T.T.C.(Triphenyl tetrazolium chloride) method and spectrophotometry, the obtained results were compared with those of normal cells. 4. At a dose of and 10, 000 rentgens' irradiation of gamma ray, the activty of each debydrogenase (G.D.H., A.D.H., L.D.H., ) shows a sharp and highest peak in optical absorbalicy, but each abtivity of S.D.H and Gl.D.H shows its' maximum peak at a dose of 30, 000r. 5. The curve of each dehydrogenase activity was found to be rhythmical according to dose-rate of gamma irradiation. 6. Comparing with activity of debydrogenase each other, the maximum peak in optical absorbency can be arranged according to order as follows; glucose > alcoholoic > lactic > glutamic > succinic, this order is identical to the order of breakdown utility in respiration of normal yeast cells. 7. The activity of dehydrogenase experimented exhibit a resistance against gamma irradiation at lethal dose of cells, and the activity of dehydrogenase are found to be much resistant than those of respiratory system. We may assume that the membrane substrate of mitochondria or cytoplasm had been destructed by gamma-irradiation much more than that of dehydronase system.

  • PDF

The Effect of Greenhouse Climate Change by Temporary Shading at Summer on Photo Respiration, Leaf Temperature and Growth of Cucumber (여름철 수시차광에 의한 온실 환경변화가 오이의 광호흡, 엽온, Thermal breakdown 등 생육에 미치는 영향)

  • Kim, Dong Eok;Kwon, Jin Kyung;Hong, Soon Jung;Lee, Jong Won;Woo, Young Hoe
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.306-312
    • /
    • 2020
  • This study was conducted to investigate cucumber plants response to greenhouse environments by solar shading in greenhouse in the summer. In order to estimate heat stress reduction of cucumber plants by solar shading in greenhouse, we measured and analyzed physiological conditions of cucumber plants, such as leaf temperature, leaf-air temperature, rubisco maximum carboxylation rate, maximum electron transport rate, thermal breakdown, light leaf respiration, etc. Shading levels were 90% mobile shading of full sunlight, 40% mobile shading of full sunlight and no shading(full sunlight). The 90% shading screen was operated when the external solar radiation is greater than 650 W·m-2. Air temperature, solar radiation, leaf temperature, leaf-air temperature and light leaf respiration in the 90% shading of full sunlight was lower than those of 40% shading and no shading. Rubisco maximum carboxylation rate, arrhenius function value and light leaf respiration of the 90% shading were significantly lower than those of 40% shading and no shading. The thermal breakdown, high temperature inhibition, of 90% shading was significantly higher than that of 40% shading and no shading. Therefore, these results suggest that 90% mobile shading made a less stressful growth environment for cucumber crops.

Photosynthesis and Growth Responses of Soybean (Glycine max Merr.) under Elevated CO2 Conditions (대기 중 CO2 상승 조건에서 재배되는 콩의 광합성과 생장 반응의 분석)

  • Oh, Soonja;Koh, Seok Chan
    • Journal of Environmental Science International
    • /
    • v.26 no.5
    • /
    • pp.601-608
    • /
    • 2017
  • The effects of elevated atmospheric $CO_2$ on growth and photosynthesis of soybean (Glycine max Merr.) were investigated to predict its productivity under elevated $CO_2$ levels in the future. Soybean grown for 6 weeks showed significant increase in vegetative growth, based on plant height, leaf characteristics (area, length, and width), and the SPAD-502 chlorophyll meter value (SPAD value) under elevated $CO_2$ conditions ($800{\mu}mol/mol$) compared to ambient $CO_2$ conditions ($400{\mu}mol/mol$). Under elevated $CO_2$ conditions, the photosynthetic rate (A) increased although photosystem II (PS II) photochemical activity ($F_v/F_m$) decreased. The maximum photosynthetic rate ($A_{max}$) was higher under elevated $CO_2$ conditions than under ambient $CO_2$ conditions, whereas the maximum electron transport rate ($J_{max}$) was lower under elevated $CO_2$ conditions compared to ambient $CO_2$ conditions. The optimal temperature for photosynthesis shifted significantly by approximately $3^{\circ}C$ under the elevated $CO_2$ conditions. With the increase in temperature, the photosynthetic rate increased below the optimal temperature (approximately $30^{\circ}C$) and decreased above the optimal temperature, whereas the dark respiration rate ($R_d$) increased continuously regardless of the optimal temperature. The difference in photosynthetic rate between ambient and elevated $CO_2$ conditions was greatest near the optimal temperature. These results indicate that future increases in $CO_2$ will increase productivity by increasing the photosynthetic rate, although it may cause damage to the PS II reaction center as suggested by decreases in $F_v/F_m$, in soybean.