DOI QR코드

DOI QR Code

Respiration Rate Estimation using IR-UWB Radar Signals Robust to Body-Rocking

인체 움직임에 강인한 IR-UWB 레이더 기반의 호흡속도추정

  • Park, Hyung Chul (Seoul National University of Science and Technology, Dept. of Electronic and IT Media Engineering)
  • 박형철 (서울과학기술대학교 전자IT미디어공학과)
  • Received : 2012.06.29
  • Published : 2012.09.25

Abstract

This paper presents a novel respiration rate estimation method based on joint amplitude and time of arrival (TOA) using impulse-radio ultra-wideband (IR-UWB) radar signals. Through analysis of the affect of body-rocking, it is shown that body-rocking information does not distort the respiration rate and exists at integer multiples of the body-rocking rate from the respiration rate. Based on the analysis, the convolution of the temporal sequence of the maximum amplitude and that of the TOA is proposed. The analysis results show that the frequency components of respiration are improved more than 10dB compared with those obtained using other existing methods.

본 논문에서는 IR-UWB 레이더 신호의 크기와 도달시간을 결합한 새로운 방법의 호흡속도추정 방법을 제안한다. 특히 이 논문에서는 분석을 통해서 인체의 흔들림이 호흡속도추정에 왜곡을 일으키지 않음을 증명한다. 분석을 바탕으로 레이더 신호의 크기 정보 신호와 도달시간 정보 신호의 컨볼루션 방법을 제안한다. 하드웨어 실험을 통한 분석을 통해서 호흡속도성분의 추출 능력이 기존의 추정 방법에 비해서 10dB 이상 향상됨을 보인다.

Keywords

References

  1. U. S. Federal Comm. Commission (FCC), "First report and order in the matter of revision of Part 15 of the commission's rules regarding ultra-wideband transmission systems," ET Docket 98-153, FCC 02-48, April 22, 2002.
  2. IEEE Std 802.15.4a-2007, "Amendment to 802.15.4-2006: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs)," 2007.
  3. "IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements. Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs) Amendment 2: Millimeter-wavebased Alternative Physical Layer Extension," IEEE Std 802.15.3c-2009 (Amendment to IEEE Std 802.15.3-2003) , vol., no., pp. c1-187, Oct. 12, 2009.
  4. MBOA SIG/ WiMedia Alliance, Inc., "MultiBand OFDM Physical Layer Specification v. 1.5.".
  5. R. Zetik, J. Sachs, and R. S. Thoma, "UWB Short-Range Radar Sensing," IEEE Instru. Meas. Mag, vol. 10, no. 2, pp. 39-45, Apr. 2007. https://doi.org/10.1109/MIM.2007.364960
  6. S. Venkatesh, C. R. Anderson, N. V. Rivera, and R. M. Buehrer, "Implementation and Analysis of Respiration-Rate Estimation using Impulse-based UWB," in Proc. IEEE Military Communications Conference (MILCOM), Atlantic City, NJ, USA, Oct. 2005, pp. 3314-3320.
  7. M. Baboli, S. A. Ghorashi, N. Saniei, and A. Ahmadian, "A New Wavelet Based Algorithm for Estimating Respiratory Motion Rate using UWB Radar," in Proc. Int. Conf. Biomedical and Pharmaceutical Engineering, 2009, pp. 1-3.
  8. M. Leib, W. Menzel, B. Schleicher, and H. Schumacher, "Vital Signs Monitoring with a UWB Radar based on a Correlation Receiver," in Proc. 4th Eur. Conf. Ant. Prop., 2010, pp. 1-5.
  9. B. Levitas and J. Matuzas, "UWB Radar for Breath Detection," in Proc. Int. Radar Symp., 2010, pp. 1-3.

Cited by

  1. 비접촉 생체신호 측정 기반 헬스케어 시스템 설계 및 구현 vol.15, pp.1, 2012, https://doi.org/10.13067/jkiecs.2020.15.1.185