• Title/Summary/Keyword: Maximum Power Coupling Condition

Search Result 26, Processing Time 0.023 seconds

Electrically Induced Damping Characteristics and a Relevant Requirement for the Maximum Power Generation in Piezoelectric Vibration Energy Harvesters (압전 진동 에너지 수확 장치의 전기 유발 감쇠 특성 및 최대 전력 발생 조건)

  • Kim, Jae Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.6
    • /
    • pp.406-413
    • /
    • 2015
  • The piezoelectric coupling in piezoelectric vibration energy harvesters with load resistance induces electrical damping as well as increase in the system stiffness. Starting from analytically deriving the explicit relations through governing equations in the frequency domain, this work identifies the characteristics of the electrically induced damping mechanism and shows that the electrically induced damping serves as a structural hysteretic damping on condition that a piezoelectric vibration energy harvester is excited at its short-circuit resonant frequency and its load resistor is optimally impedance- matched at the same time. Finally, it is analytically verified that the equivalence of a mechanical and an electrically induced damping ratio is required for the maximum power generation at a load resistor, which was claimed in some literature.

Estimation of Maximum Load Capacity at Interconnection Line of High-Speed and Conventional Line (기존선-고속선 연결선 구간에서 최대부하용량 평가)

  • Lee, Chang-Mu;Lee, Han-Min;Oh, Seo-Chan;Kim, Gil-Dong;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1069-1070
    • /
    • 2008
  • At the coupling area linking high speed line and conventional line, according to distance between trains due to speed limit of conventional line, the power load of substation supplying to this conventional line increase. At the coupling area between Kimcheon SS and Kyoungsan SS, train operation have problems caused by instantaneous voltage drop. So, this paper propose evaluation method of maximum load capacity at current normal feeding condition.

  • PDF

A Study on Silica based 4$\times$4 Optical Star Coupler with Tapered Coupling Structure (테이퍼 결합구조를 갖는 4$\times$4 성형 결합기에 관한 연구)

  • 윤현성;김정근
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.983-986
    • /
    • 1998
  • Inthis paper, we design 4$\times$4 optical star coupler with tapered coupling structure. The 4$\times$4 optical star coupler consists of four 3dB couplers and a 100% coupler with tapered structure. This star coupler is designed by the 2 dimension FD-BPM(finite difference beam propagation method) using TBC(transparent boundary condition). consequently, the maximum power unbalance ratios of relative output power from each of the output waveguides for each of input guides are less than 0.1dB, and the transmission efficiency is more than 99%.

  • PDF

Electric Characteristics of Disk-type Piezoelectric Transformer (디스크형 압전 변압기 의 전극크기 변화에 대한 전기적 특성)

  • Kim, Dong-Soo;Kim, Young-Deog;Kim, Kwang-Il;Do, Yeung-Soo;Nam, Sung-Jin;Nam, Hyo-Duk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.226-229
    • /
    • 2005
  • In this study, a step-down piezoelectric transformer was fabricated to utilize as an adapter for charging batteries of mobile electronic appliances. The ceramic part of the transformer is $Pb[(Mn_{1/3}Sb_{2/3})_{0.05}Zr_{0.475}Ti_{0.475}]O_3$ with mechanical quality factor of 1600, electromechanical coupling coefficient 59 %, and piezoelectric constant d33 1300, which can be utilized as a piezoelectric transformer. A simply fabricated disk-typed test pattern of diameter 28 mm and thickness 2 mm was used to characterize resonant frequency, Qm, kp according to the different input/output electrode area. efficiency and power as a function of load resistance was also investigated. The sample APT showed some spurious mode and BPT showed better frequency property. Taking all properties which are admittance, effective electromechanical coupling coefficient and mechanical quality factor most suitable for piezoelectric transformer is BPT which has 12 mm diameter electrode and the condition of 15 Vrms, 30 $\Omega$ made the maximum efficiency of 93.7 % and maximum power is 6W with 50 Vrms.

  • PDF

Novel Coupling Condition between Optical Fiber and Microstrip Antenna in Photonic Antenna (Photonic 안테나에서 광섬유와 마이크로스트립 안테나사이의 새로운 결합조건)

  • Ho Kwang-Chun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.4 s.346
    • /
    • pp.31-37
    • /
    • 2006
  • Strongly motivated by the need for significant reduction in the optics-to-antenna interface circuitry used in a Photonically controlled array, it has proposed the design development of a novel 'true photonic antenna' consisted of optical fiber and micro-strip antenna. To clarify the design capability of the geometry, modal transmission-line theory including the discontinuity property between circular i,nd planar guiding structures is defined, md the optical power coupling of a slot-coupled microstrip antenna directly fed from an optical fiber using photoconductive effect is evaluated numerically. The numerical results reveal that the maximum power transfer between the two different guiding structures occurs at a new point in which the guiding powers of two rigorous modes are equally partitioned.

Thermal-fluid-structure coupling analysis for plate-type fuel assembly under irradiation. Part-I numerical methodology

  • Li, Yuanming;Yuan, Pan;Ren, Quan-yao;Su, Guanghui;Yu, Hongxing;Wang, Haoyu;Zheng, Meiyin;Wu, Yingwei;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1540-1555
    • /
    • 2021
  • The plate-type fuel assembly adopted in nuclear research reactor suffers from complicated effect induced by non-uniform irradiation, which might affect its stress conditions, mechanical behavior and thermal-hydraulic performance. A reliable numerical method is of great importance to reveal the complex evolution of mechanical deformation, flow redistribution and temperature field for the plate-type fuel assembly under non-uniform irradiation. This paper is the first part of a two-part study developing the numerical methodology for the thermal-fluid-structure coupling behaviors of plate-type fuel assembly under irradiation. In this paper, the thermal-fluid-structure coupling methodology has been developed for plate-type fuel assembly under non-uniform irradiation condition by exchanging thermal-hydraulic and mechanical deformation parameters between Finite Element Model (FEM) software and Computational Fluid Dynamic (CFD) software with Mesh-based parallel Code Coupling Interface (MpCCI), which has been validated with experimental results. Based on the established methodology, the effects of non-uniform irradiation and fluid were discussed, which demonstrated that the maximum mechanical deformation with irradiation was dozens of times larger than that without irradiation and the hydraulic load on fuel plates due to differential pressure played a dominant role in the mechanical deformation.

The Assessment for Coupling Integrity of Pressurizer Support Bolting (가압기 지지대 볼트 연결부의 건전성 평가에 관한 연구)

  • Cho, Nam-Jin;Kim, Woo-Chang;Kim, Hak-Joong
    • Fire Science and Engineering
    • /
    • v.27 no.5
    • /
    • pp.26-31
    • /
    • 2013
  • In nuclear power plant, anchor bolts for pressurizer supports are sufficiently used in terms of safety reason, but field inspections have reported that some bolts exceed the limit of their allowable hardness. Because the high level of hardness may lead to failures due to the stress corrosion or fracture toughness, a regular inspection is required for the bolts in nuclear power plant. Thus, this research measures the hardness of bolts currently used in pressurizer supports and then estimates maximum allowable stresses preventing failures by stress corrosion and fracture toughness. Using the ANSYS program, the stresses of the bolts in the regular condition and accidental condition have been calculated, and the possible maximum stress has been compared with the estimated allowable stresses. From the results, the stresses of bolts in the accidental condition satisfy the allowable safety stress from the stress corrosion failure. However, in the future, it shall be needed to consider the reflection of the structure assembling method on the assembling procedure to ensure the pressurizer integrity during maintenance period time.

Study of modified Westergaard formula based on dynamic model test on shaking table

  • Wang, Mingming;Yang, Yi;Xiao, Weirong
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.661-670
    • /
    • 2017
  • The dynamic model test of dam-reservoir coupling system for a 203m high gravity dam is performed to investigate effects of reservoir water on dynamic responses of dam during earthquake. The hydrodynamic pressure under condition of full reservoir, natural frequencies and acceleration amplification factors along the dam height under conditions of full and empty reservoir are obtained from the test. The results indicate that the reservoir water have a stronger influence on the dynamic responses of dam. The measured natural frequency of the dam model under full reservoir is 21.7% lower than that of empty reservoir, and the acceleration amplification factor at dam crest under full reservoir is 18% larger than that under empty reservoir. Seismic dynamic analysis of the gravity dams with five different heights is performed with the Fluid-Structure Coupling Model (FSCM). The hydrodynamic pressures from Westergaard formula are overestimated in the lower part of the dam body and underestimated in its upper part to compare with those from the FSCM. The underestimation and overestimation are more significance with the increase of the dam height. The position of the maximum hydrodynamic pressure from the FSCM is raised with the increase of dam height. In view of the above, the Westergaard formula is modified with consideration in the influence of the height of dam, the elasticity of dam on the hydrodynamic pressure. The solutions of modified Westergaard formula are quite coincident with the hydrodynamic pressures in the model test and the previous report.

Wind-sand coupling movement induced by strong typhoon and its influences on aerodynamic force distribution of the wind turbine

  • Ke, Shitang;Dong, Yifan;Zhu, Rongkuan;Wang, Tongguang
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.433-450
    • /
    • 2020
  • The strong turbulence characteristic of typhoon not only will significantly change flow field characteristics surrounding the large-scale wind turbine and aerodynamic force distribution on surface, but also may cause morphological evolution of coast dune and thereby form sand storms. A 5MW horizontal-axis wind turbine in a wind power plant of southeastern coastal areas in China was chosen to investigate the distribution law of additional loads caused by wind-sand coupling movement of coast dune at landing of strong typhoons. Firstly, a mesoscale Weather Research and Forecasting (WRF) mode was introduced in for high spatial resolution simulation of typhoon "Megi". Wind speed profile on the boundary layer of typhoon was gained through fitting based on nonlinear least squares and then it was integrated into the user-defined function (UDF) as an entry condition of small-scaled CFD numerical simulation. On this basis, a synchronous iterative modeling of wind field and sand particle combination was carried out by using a continuous phase and discrete phase. Influencing laws of typhoon and normal wind on moving characteristics of sand particles, equivalent pressure distribution mode of structural surface and characteristics of lift resistance coefficient were compared. Results demonstrated that: Compared with normal wind, mesoscale typhoon intensifies the 3D aerodynamic distribution mode on structural surface of wind turbine significantly. Different from wind loads, sand loads mainly impact on 30° ranges at two sides of the lower windward region on the tower. The ratio between sand loads and wind load reaches 3.937% and the maximum sand pressure coefficient is 0.09. The coupling impact effect of strong typhoon and large sand particles is more significant, in which the resistance coefficient of tower is increased by 9.80% to the maximum extent. The maximum resistance coefficient in typhoon field is 13.79% higher than that in the normal wind field.

Electric Characteristics of Disk-type Piezoelectric Transformer (디스크형 압전 변압기의 전기적 특성)

  • Kim, Dong-Soo;Kim, Kwang-Il;Kim, Heung-Rak;Jeong, Woo-Cheol;Nam, Hyo-Duk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1007-1013
    • /
    • 2005
  • In this study, a step-down piezoelectric transformer was fabricated to utilize as an adapter for charging batteries of mobile electronic appliances. The ceramic part of the transformer is $Pb[(Mn_{1/3}Sb_{2/3})_{_0.05}Zr_{0.475}Ti_{0.475}]O_3$ with mechanical quality factor of 1600, electromechanical coupling coefficient $59\%$, and piezoelectric constant $d_{33}$ 1300, which can be utilized as a piezoelectric transformer. A simply fabricated disk-typed test pattern of diameter 28 mm and thickness 2 mm was used to characterize output voltage, step-down ratio as a function of electrode area with the input remained constant, and power, efficiency as a function of input voltage, and temperature-dependent electric characteristics were evaluated. The sample APT1 showed the best properties. The highest admittance, effective electromechanical coupling coefficient and an appropriate mechanical quality factor were obtained at the sample with the input/output area ratio of 1:1.5 at the common electrode, and the condition of 20 $V_{rms}$, $50\;\Omega$ made the maximum efficiency of $95\%$. The temperature was increased by 14.7'E as the input voltage was increased for $50\;V_{rms},\;50\;\Omega$.