• Title/Summary/Keyword: Maximum Likelihood Estimation Method

Search Result 516, Processing Time 0.022 seconds

An Approximation of the Cumulant Generating Functions of Diffusion Models and the Pseudo-likelihood Estimation Method (확산모형에 대한 누율생성함수의 근사와 가우도 추정법)

  • Lee, Yoon-Dong;Lee, Eun-Kyung
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.38 no.1
    • /
    • pp.201-216
    • /
    • 2013
  • Diffusion is a basic mathematical tool for modern financial engineering. The theory of the estimation methods for diffusion models is an important topic of the financial engineering. Many researches have been tried to apply the likelihood estimation method for estimating diffusion models. However, the likelihood estimation method for diffusion is complicated and needs much amount of computing. In this paper we develop the estimation methods which are simple enough to be compared to the Euler approximation method, and efficient enough statistically to be compared to the likelihood estimation method. We devise pseudo-likelihood and propose the maximum pseudo-likelihood estimation methods. The pseudo-likelihoods are obtained by approximating the transition density with normal distributions. The means and the variances of the distributions are obtained from the delta expansion suggested by Lee, Song and Lee (2012). We compare the newly suggested estimators with other existing estimators by simulation study. From the simulation study we find the maximum pseudo-likelihood estimator has very similar properties with the maximum likelihood estimator. Also the maximum pseudo-likelihood estimator is easy to apply to general diffusion models, and can be obtained by simple numerical steps.

Comparison of parameter estimation methods for normal inverse Gaussian distribution

  • Yoon, Jeongyoen;Kim, Jiyeon;Song, Seongjoo
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.1
    • /
    • pp.97-108
    • /
    • 2020
  • This paper compares several methods for estimating parameters of normal inverse Gaussian distribution. Ordinary maximum likelihood estimation and the method of moment estimation often do not work properly due to restrictions on parameters. We examine the performance of adjusted estimation methods along with the ordinary maximum likelihood estimation and the method of moment estimation by simulation and real data application. We also see the effect of the initial value in estimation methods. The simulation results show that the ordinary maximum likelihood estimator is significantly affected by the initial value; in addition, the adjusted estimators have smaller root mean square error than ordinary estimators as well as less impact on the initial value. With real datasets, we obtain similar results to what we see in simulation studies. Based on the results of simulation and real data application, we suggest using adjusted maximum likelihood estimates with adjusted method of moment estimates as initial values to estimate the parameters of normal inverse Gaussian distribution.

A Study on Maximum Likelihood Method for Multi Target Estimation (다중 목표물 추정을 위한 최대 우도 방법에 대한 연구)

  • Lee, Min-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.165-170
    • /
    • 2013
  • In spatial, desired target direction of arrival estimation is to find a incidental signal direction on receive antennas. In this paper, we were an estimation a desired target direction of arrival using maximum likelihood method. Direction of arrival estimation method estimated a desired target calculating the maximum likelihood sensitivity using singular value decomposition above threshold signals among receive signals in maximum likelihood method. Through simulation, we were analysis a performance to compare existing method and proposal method. In direction of arrival estimation, proposed method is effectivity to decrease processing time because it is not doing an eigen decomposition in direction of arrival estimation, and desired target correctly estimated. We showed that proposal method improve more target estimation than general method.

A Comparative Study of the Parameter Estimation Method about the Software Mean Time Between Failure Depending on Makeham Life Distribution (메이크헴 수명분포에 의존한 소프트웨어 평균고장간격시간에 관한 모수 추정법 비교 연구)

  • Kim, Hee Cheul;Moon, Song Chul
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.1
    • /
    • pp.25-32
    • /
    • 2017
  • For repairable software systems, the Mean Time Between Failure (MTBF) is used as a measure of software system stability. Therefore, the evaluation of software reliability requirements or reliability characteristics can be applied MTBF. In this paper, we want to compare MTBF in terms of parameter estimation using Makeham life distribution. The parameter estimates used the least square method which is regression analyzer method and the maximum likelihood method. As a result, the MTBF using the least square method shows a non-decreased pattern and case of the maximum likelihood method shows a non-increased form as the failure time increases. In comparison with the observed MTBF, MTBF using the maximum likelihood estimation is smallerd about difference of interval than the least square estimation which is regression analyzer method. Thus, In terms of MTBF, the maximum likelihood estimation has efficient than the regression analyzer method. In terms of coefficient of determination, the mean square error and mean error of prediction, the maximum likelihood method can be judged as an efficient method.

Box Feature Estimation from LiDAR Point Cluster using Maximum Likelihood Method (최대우도법을 이용한 라이다 포인트군집의 박스특징 추정)

  • Kim, Jongho;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.123-128
    • /
    • 2021
  • This paper present box feature estimation from LiDAR point cluster using maximum likelihood Method. Previous LiDAR tracking method for autonomous driving shows high accuracy about velocity and heading of point cluster. However, Assuming the average position of a point cluster as the vehicle position has a lower accuracy than ground truth. Therefore, the box feature estimation algorithm to improve position accuracy of autonomous driving perception consists of two procedures. Firstly, proposed algorithm calculates vehicle candidate position based on relative position of point cluster. Secondly, to reflect the features of the point cluster in estimation, the likelihood of the particle scattered around the candidate position is used. The proposed estimation method has been implemented in robot operating system (ROS) environment, and investigated via simulation and actual vehicle test. The test result show that proposed cluster position estimation enhances perception and path planning performance in autonomous driving.

Simplified Maximum Likelihood Estimation of the Frequencies of Multiple Sinusoids (간략화된 최우도 방법을 사용한 다중 정현파의 주파수 추정)

  • Ahn, Tae-Chon;Oh, Sung-Kwun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.20-31
    • /
    • 1994
  • The maximum likelihood(ML) estimation has excellent accuracy for frequency estimation of multiple sinusoids, but the maximum likelihood function requires much loss owing to the high nonlinearity. This paper presents a simplified maximum likelihood estimation, in order to improve the nonlinearity of the maximum likelihood estimation for frequencies of sinusoids in signals. This method is applied to the frequency estimation of sinusoidal signals corrupted by white or colored measurement noise. Monte-carlo simulations are conducted for the comparison of ML method with the best MFBLP method, in terms of sampled mean, root mean square and relative bias. The power spectral density and the position of frequency in unit circle are appeared in figures.

  • PDF

Multi-Pulse Amplitude and Location Estimation by Maximum-Likelihood Estimation in MPE-LPC Speech Synthesis (MPE-LPC음성합성에서 Maximum- Likelihood Estimation에 의한 Multi-Pulse의 크기와 위치 추정)

  • 이기용;최홍섭;안수길
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.9
    • /
    • pp.1436-1443
    • /
    • 1989
  • In this paper, we propose a maximum-likelihood estimation(MLE) method to obtain the location and the amplitude of the pulses in MPE( multi-pulse excitation)-LPC speech synthesis using multi-pulses as excitation source. This MLE method computes the value maximizing the likelihood function with respect to unknown parameters(amplitude and position of the pulses) for the observed data sequence. Thus in the case of overlapped pulses, the method is equivalent to Ozawa's crosscorrelation method, resulting in equal amount of computation and sound quality with the cross-correlation method. We show by computer simulation: the multi-pulses obtained by MLE method are(1) pseudo-periodic in pitch in the case of voicde sound, (2) the pulses are random for unvoiced sound, (3) the pulses change from random to periodic in the interval where the original speech signal changes from unvoiced to voiced. Short time power specta of original speech and syunthesized speech obtained by using multi-pulses as excitation source are quite similar to each other at the formants.

  • PDF

A Comparative Study Of Maximum Likelihood Method With Bayesian Approach In Statistical Parameter Estimation Of Static Systems (정적계통의 통계적 퍼래미터 추정에 있어 최우도법과 Bayes식방법과의 비교연구)

  • 한만춘;최경삼
    • 전기의세계
    • /
    • v.22 no.2
    • /
    • pp.51-56
    • /
    • 1973
  • The comparative study of maximum likelihood estimation with Bayesian approach was made by statistical & computational methods in center of a priori information of static systems and the effect of a priori information on the accuracy of the estimatiion was also analyzed. Through the numerical computations of some examples by digital computer, we concluded that maximum likelihood method is better than Bayesian estimation except for almost certain a priori informations. The study may therefore contribute in identification problems of dynamical systems connected with a priori informations.

  • PDF

An Estimation of Parameters in Weibull Distribution Using Least Squares Method under Random Censoring Model (임의 중단모형에서 최소제곱법을 이용한 와이블분포의 모수 추정)

  • Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.2
    • /
    • pp.263-272
    • /
    • 1996
  • In this parer, under random censorship model, an estimation of scale and shape parameters in Weibull lifetime model is considered. Based on nonparametric estimator of survival function, the least square method is proposed. The proposed estimation method is simple and the performance of the proposed estimator is as efficient as maximum likelihood estimators. An example is presented, using field winding data. Simulation studies are performed to compare the performaces of the proposed estimator and maximum likelihood estimator.

  • PDF

Reliability Estimation of Generalized Geometric Distribution

  • Abouammoh, A.M.;Alshangiti, A.M.
    • International Journal of Reliability and Applications
    • /
    • v.9 no.1
    • /
    • pp.31-52
    • /
    • 2008
  • In this paper generalized version of the geometric distribution is introduced. This distribution can be considered as a two-parameter generalization of the discrete geometric distribution. The main statistical and reliability properties of this distribution are discussed. Two methods of estimation, namely maximum likelihood method and the method of moments are used to estimate the parameters of this distribution. Simulation is utilized to calculate these estimates and to study some of their properties. Also, asymptotic confidence limits are established for the maximum likelihood estimates. Finally, the appropriateness of this new distribution for a set of real data, compared with the geometric distribution, is shown by using the likelihood ratio test and the Kolmogorove-Smirnove test.

  • PDF