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Abstract. In this paper generalized version of the geometric distribution is
introduced. This distribution can be considered as a two-parameter generalization
of the discrete geometric distribution. The main statistical and reliability
properties of this distribution are discussed. Two methods of estimation, namely
maximum likelihood method and the method of moments are used to estimate the
parameters of this distribution. Simulation is utilized to calculate these estimates
and to study some of their properties. Also, asymptotic confidence limits are
established for the maximum likelihood estimates. Finally, the appropriateness of
this new distribution for a set of real data, compared with the geometric
distribution, is shown by using the likelihood ratio test and the Kolmogorove-
Smirnove test.
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likelihood estimation, confidence interval, Likelihood ration test, approximate
Komlogorove-Smirnove statistic.

1. INTRODUCTION

Discrete distributions have been shown to be important in many real life situations.
For instance, life length data can be measured by number of runs, cycles or shocks, among
many others, and hence it is represented by discrete variable. Most of the known
univariate discrete distributions have been reviewed in Johnson, Kotz and Kemp (2005). It
is known that most of the known discrete distribution are defined for non-negative
variables and hence are utilized for modelling life data.

Some of the discrete distributions can be viewed as analogous to continuous
distributions. An important example is the geometric distribution which is considered as
the discrete version of exponential distribution. Nakagawa and Osaki (1975) introduced a
discrete type-I Weibull distribution. Later, Stein and Dattero (1984) introduced another
version of discrete Weibull distribution, called type II. Estimation of parameters for type-
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I Weibull distribution was studied by Ali Khan, Khalique and Abouammoh (1989) via a
new method known by the method of proportion.

Many authors have considered discrete versions of reliability functions and the
discrete forms of various classes of aging distribution, see Abramowitz and Stegun (1972),
Abouammoh (1991), Evans, Hastings and Peacock (2000), Wilmmer and Altmann (1999),
among many others.

The sequel of this paper is as follows: the definition of the new generalized geometric
distribution and its statistical and reliability properties are given in section 2. Estimation of
the parameters by maximum likelihood and moment methods for this model are derived in
sectio 3. Further, properties of these estimates and the estimate of the relibility function,
based on these estimates, are studied via simulation.

2. THE GENERALIZED GEOMETRIC DISTRIBUTION

In comparison with the generalized exponential distribution, see Gupta and Kundu
(1999), one can introduce the following:

Definition 2.1 A discrete random variable X is said to have a generalized geometric
distribution with parameters ¢ and o, denoted by (GGD(q,q)), if its distribution function is
give by:

P=P(X<x)= (1-q*)" xeZ 0<¢<I,o>0 2.1
where Z={1,2,3,...}.

The probability mass function (pmf) can be given by:
p=PX=x)= (1-q¢")* -(1-¢")* ,xez (2.2)

One can see that the pmfin (2.2) satisfies the following properties.
1) p. =0, this is noticed since
g <q”’, xez

and
2) Zp* =1.

The later property can be obtained by noting that

o0 m
Y p,=lim lex =lim,,_, (1-¢")% =1
X=

x=1

Hence, this new discrete distribution with pmf (2.2) can viewed as the discrete
analogous of continuous generalized exponential distribution. This distribution implies the
geometric distribution as a special case when o=1.
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2.1 The reliability functions
Here, the survival functions, the failure rate and mean remaining life (MRL) are

derived GGD(g, ) and some of their properties are pointed out.

The survival function of this distribution is given by

Py =1-(1-¢*)% (2.3)
Whereas the corresponding failure rate is given by,
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Figure 2.1. pmfof GGD(0.5, 2).
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Figure 2.2. pmfof GGD(0.2, 2)
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Figure 2.3. pmf of GGD(0.8, 2)
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Figure 2.4. Failure rate of GGD (0.5, &)

Figures 2.1, 2.2 and 2.3 represent the graph of the pmf GGD with ¢=0.5, 0.2, 0.8,
o=2. Whereas Figure 2.4 represents the failure rate for ¢=0.5, ce=1, 3, 9, respectively.
One can notice the wide variety of shapes the pmf and the failure rate can produce for

different values of q and o
The mean remaining life (MRL) of the GGD(q,a) which is also called the mean
residual life, by some authors, is defined by
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This form can be reduced to the following,
- ala ) qz’x
T TR o R [
feaern S0
() = £ - : )
1_(1_(].’(—])(1 1_(1w(/.Y‘~1)a

One can easily see that for x=0, the MRL is reduced the mean ot E(X) of the GGD
(q.0), which is derived in the following part .

2.2 Basic statistical properties

The main basic statistical properties, namely the mean, the variance and moment
generating function

It is known that the mean has the form:
P=2X Py
X

- lex((l-q")a-(l—qx*)“)

Thus for integer o the mean becomes
[24 i+1 1
= ?;1[. }(-1)”’ — (2.6)
! (I-¢)

Note that we can get the mean also by putting x=0 in the MRL that is given by (2.5).
Now the variance of the GGD (g,o) random variable is calculated by using :

Ol =Ex)- 12 2.7

But one can show that, see Amold, Balakrishnan, and Nagaraja (1992), if the support
of the distribution is a subset of nonnegative integers, then:

E(X2)=2 5'_:“0;((1 _P(X <x))+u

Substitutions with our distribution in (2.1) we get
o0
E(X?)=23x[1-(1-¢")"]+ u
x=1

But for integer values of ¢, one has
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Ex) =23 -1*‘*‘——L ! a} -1 i*‘;, 2.8
“ ZU( ) (l—q*>2+2=‘(i D ey

or

E(X*)= 22{1 J(—-l)"'” m 29)

i=1

Substituting from relations (2.7) the variance of the GGD becomes

o’ =2IZ::(E ) _ ,( )( ™ m)z (2.10)

Now the moment generating function (mgf) of GGD(q,q) is given by
M ()= E(e")

—Zetx((l g -(1-¢4"")")
= i[ﬂ(—l)" [Z(e’q")" —;Z_:(e'q‘)‘},

i=1 \[

i+l

but |
Z(e‘q) = tq:,.
<=1 eq
Hence
M (t ==§(ﬂ(—l) (il(q ;J (2.11)

To verify this formula one may evaluate the mean using (2.11) i.e.

o,
=i(f’}(—1)’ ¢ ~1)—

i=1 \! (1_9191)2
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Therefore

0 _ga_i(qi—l):aa_m_l_
{51‘4,{(?)120—2()( Yy ——5 Z[J( D) —g

i\ (1-¢")* =\
and this is the same as (2.6).

Note that in the earlier statistical or reliability properties the corresponding forms are
reduced to the forms of the geometric distribution for ce=1. Note also that for real ¢, the
sum in all the above formulae will go to infinity rather than till &

2.3 Distribution of extreme value
In many practical situations, one may be interested to find out the distribution of
parallel system composed of n components with identical GGD(q,0) or different forms,

GGD (g,¢,), i=1, 2, ..., n life lengths. Now let X, X;,..., X, be an iid sample of the

GGD(g,0) and let X=max(X,, X, ..., X,), then X, has a GGD(q, na ) life length. This
result is shown by

Fo(0)= p(Xgy <%) =11 p(X; <x)=[1 F(x) =(1-¢g*)* @12
i=1

i=1

Where Fi,, and F are the df of the n™ order statistic and the parent distribution
respectively. In the case of non identical distributions, that is if X; has a GGD(g, o)
equation (2.12) becomes

n
) 2 a (2.13)
F(n) (x)=(0-¢ )z:l
Equations (2.13) indicates that the maximum of a sample of GGD has the same
distribution with a second parameter equal to the sum of parameters «;,,1=1,2,...,n..

3. PARAMETER ESTIMATION

In order to evaluate the reliability estimate of systems composed of GGD
components we consider the problem of estimation for the parameters of the GGD,
namely ¢ and a. In this section, the method of maximum likelihood and the method of
moment are used to estimate the parameters. In both methods, we consider the general
case when both parameters ¢ and o. are unknown.

3.1 Maximum likelihood estimation
Let X, X, ..., X, be arandom sample of the GGD having the corresponding values
Xp, Xz, ..., Xy , the likelihood function is then given by
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n n X x. -1
lg.0)=1p, =T1|d=¢")"~d=¢" )]
=] ! i=1
Therefore, the In /(g, o) likelihood is
Inl(g,)=YIn {(1-g")% -A-g" ~")*}. 3.1)
i=]
Hence

~ax g (A-g" )y va (x;-1) g i (1-g ! (3.2)

2lnf(q,a) -3

oq - (1-g")*-d-g"")"

And
a I3 & A e i
9 nlg.a)= Z(I g in(1- q )-A-¢")*Ind-¢"") (33)
oa (1-g")*-d-g"*

Equating the quantities in (3.2) and (3.3) to zero, we get the normal equations, which
have no explicit solution so they need to be solved numerically.

Method of moment estimation

Here, we consider the method of moment estimation for the parameters ¢ and o of
GGD (g,q), where both parameters are unknown. Note that (2.6) and (2.10) give the mean
and variance of this distribution. Since the mean and variance are expressed in terms of
infinite series for real o, we restrict the estimation here to the case of integer-valued a
Hence, if we have random sample of size n of GGD (g,c) with sample mean X and ample
variance s°, the method of moment estimators of ¢ and « are obtained by solving the
following equations for both ¢ and «,

—'= a o _ i+1 _____!_._
X Ei:l(i J( D 1-4") (3.4)

2
s2=2a(aj -1 "*‘—1.——( ”‘_(aj Dy J (3.5)
2 T e ) A vy

Here again there are no explicit solutions to the above equations and hence Mathematic
is used to obtain numerical solution for tem that give simulated estimation for ¢ and v
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Calculation and discussions

We have already noted that the estimators obtained have no explicit forms, and hence
they have to be calculated numerically. A sample of GGD (¢,0) can be generated from a
standard uniform sample 1;, i=1,2,...,n by using the following relation

In(1-u"%)
Ing

where [z] is the integer part of z.

Mathematica software is used to generate samples of GGD using (3.6) and solve the
numerical equations to find the estimates.

For the maximum likelihood estimates (MLEs) we consider sample sizes of 15, 20
(10)50 and 100, the population values of aare 3, 3.5, 4, 4.5, 5, 5.5, 7 and 9 while the q
value is 0.8. MLEs of the parameters, when both of the parameters are unknown, are
evaluated based on 1000 replicates.

Table 3.1 represents the MLEs of o, the ratio (@/«), bias and mean square error
(mse) is also presented. It is observed from the results that the mse decreases as the
sample size increases. The mse, on the other hand, increases as the value of a increases. It
is noted here also that the cases are tend to be more overestimate for large values of n.

In Table 3.2, the MLEs of ¢ are presented. Note that the mean square error (mse) of g
decreases as n gets large. Also, the absolute value of bias gets smaller for larger sample
sizes. As the values of « change in the same sample size mse remains almost fixed. This
means that the estimation of ¢ does not depend on the value of & Results for the estimate
of q, ¢, tend to be more underested.

Table 3.3 represents the MLE of reliability function, based on the MLEs’ of the
parameters, compared with the true value of the reliability function. These two functions
are evaluated at x=5 and denoted by §,,. and S respectively. It is observed that in
general, the absolute value of bias decreases as n gets large. Also the estimated Survival
function (sf) increases as the value of « gets large. Also, one can note that §, . in Table

x=[ 1+1, i=12,..,n. (3.6)

MLE
3.3 shows underestimation.

Tables 3.4, 3.5 and 3.6 represent MMEs of o, ¢, and sf at x=5 respectively. The
summation in (3.4) and (3.5) are restricted for integer values of ¢, i.e. 3,5, 7, and 9 where
the value of ¢ in these tables is taken to eaual 0.8. On the other hand Tables 3.7, 3.8 and
3.9 represent MMEs of ¢ g, and sf at for ¢ equal 0.4. In both cases one can note that, in
general the mse of the estimates decreasing as # increasing. In term of mse, the estimation
of & is better for small values of o, while the estimate of g is better for large values of o
The estimates of « tend to be more over estimation while the estimates of ¢ tend to be
more under estimation. As expected, the value of the estimated survival function increases
as « increases and the absolute value of the bias decreases as the sample size gets larger.
Comparing Tables 3.4, 3.5 and 3.6 where ¢g=0.8 with Tables 3.7, 3.8 and 3.9 where ¢=0.4,
it is observe, almost for all the cases, that the estimates of o and ¢ are better(based on the
mse) when for ¢=0.8, evenao the ratio for the survivals ( § /5) is higher in the case of

VAL
q=0.8 which may indicate that the estimates of the parameters and survival function are is
better (base on the mse) for larger values of q.
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To conclude and by comparing the last simulated results in six tables it is observed

that the MME has given preferable results than MLE for estimating the parameters of
GGD(q,0).

4. ASYMPTOTIC CONFIDENCE INTERVALS

Here we will derive the asymptotic confidence intervals (Cls) for the parameters of

the new discrete distribution considered in this paper, depending on the asymptotic
distribution of the MLEs of the parameters.

To derive the asymptotic CIs for gand @ we have to find the 2™ derivative of the

log likelihood function wrt to the parameters, where the 1% derivatives are given by (3.2)
and (3.3).

Now
0 i3 20 ONO) ag 5O @
aqz =1 (Ki(g))z '
0* 2k, ()@, (0) — (@,(8))°
——l l — i i2 il 42
da’ me ; (x,(0))° “-2)

" 16)- 347 @50 2,0)+ x,0)v,(O) 43)

dadq it (x;(0))°

Where one finds that;

K(0)=(1-g")*-(1-g"")" (4.4

7,(0) = q(x; -1)(x; - (A-g* )™ = ¢’x, (x, -1)(1-g )"
—¢" (@~ -1’ (1-¢")*? +¢"x] (a-1)(1-¢")"* @)

7,(0)=((x, - DA-g"")*" = gx,(1- "))’ (4.6)
@,(0)=(1-g")*In(l-¢") - (1-¢"")*In(1-¢"") 4.7)
0, (0)=(1-g") [0~ g™} —(1-¢"")*[In(1-g" )]’ (4.8)
£(0)=g(1-g") " x—(x-1)(1-g")*" (4.9)

0,(@)=(x=D(A-¢")*" —gx,(1-¢")* " + (s, - DA -¢")inl-¢")
~a(x =D(A-¢")* " In(t - ¢* ) + gax, (1 - ¢*)* " In(1 - g™)

and €=(q,a).

If 6= (¢,@) is the MLE of 8, the observed information matrix would be

(4.10)
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-0°Inl(0) -3*Ini(6)

da’ da O
1(0) = 9
—0'nl) 5, 10) (4.11)
Oa 0q T

a=a.g=q
Hence the variance covariance matrix would be 7 '(£). The approximate (1-6)

100% CIs for a and qare: a+&s,V(@)andgt&s,, JV(g) respectively,
where V(&) and V() are the variances of ¢ and § which are given by the 1% and the 2™

diagonal element of [ _1(0), and &;,, is the upper (8/2) percentile of standard normal
distribution.

S. DATA ANALYSIS

Here we use a real data to represents the survival times (in days) of 40 patients
suffering from blood cancer. The data are collected in one of the Ministry of Health
Hospitals in Saudi Arabia; see Abouammoh et al. (1994).

115, 181, 255, 418, 441, 461, 516, 739, 743, 789, 807, 865, 924, 983, 1024, 1062,
1063, 1165, 1191, 1222, 1222, 1251, 1277, 1290, 1357, 1369, 1408, 1455, 1478, 1549,
1578, 1578, 1599, 1603, 1605, 1696, 1735, 1799, 1815, 1852

We make the likelihood ratio test to determine whether this data comes from GGD or
GD distributions, 1.e. our test is

Ho: o=1 (GD)

Hi:a A (GGD)

The estimates and the LRT statistic for the blood cancer data of the test are displayed
in the following table

q a n i) X p-value
Under -
0.9991 |  —---
& Under 321428 11.1628 0.00051
H, 0.9989 1.48652 315.847

Looking at this result we recommend that this data comes from GGD. The
approximate Kolmogorov- Smirmove (K-S) distance for GGD and GD are

K-S gen = 0.244

K-S'sp =0.303

Which confirm the result of the LRT above.

To find the 95% CIs for the parameters in our example we obtain the observed
information matrix as follows
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10) 2(18.108 1890 )

1890  4.68x107

Hence the variance covariance matrix would be

0.096  —0.00004
~0.0004 3.696x107%

I (9)=[

The 95% confidence intervals for the MLEs of ¢ and @ are (0.97813, 1.9950) and
(0.9986, 0.9992), respectively.

6. DISCUSSIONS

In this paper, a new probability model, namely the generalized geometric
distribution, is introduced. The geometric distribution is obtained as a special case if the
second parameter @ =1. It is shown that the GGD can fit some life data better than the

geometric distribution. MLE’s and MME’s are simulated for the both parameters of
GGD(q,0).

In fact one may consider other methods of estimation for the parameters of this
model. The relations of this distribution with other existing discrete distributions such as
different forms of discrete Weibull are worthy of investigation. It is also of interest to
researcher to study the compounding of the GGD with other discrete or continuous
distributions. Estimation of the parameter under various censoring schemes such as
random and progressive censoring are to be investigated. The authors hope to consider
some of these problems in forthcoming work.
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Table 3.1. MLEs for « for GGD

n=15 n=20 n=30 n=40 n=50 n=100

(c=3)

a 3.46831 3.41934 3.59841 3.19157 3.07607 3.44097
ala 1.1561 1.13978 1.19947 1.06386 1.02536 1.14699
bias 0.46831 0.41934 0.59841 0.19157 0.07607 0.44097
mse 1.03105 0.81541 1.07944 0.32523 0.39224 0.29471

(0=3.5)

a 3.54149 3.57388 3.55089 3.58301 3.37949 3.8684
ala 1.01185 1.02111 1.01454 1.02372 0.96557 1.11383
bias 0.04149 0.07388 0.050887 0.08301 -0.12051 0.3984
mse 0.88467 0.79472 0.60803 0.42955 0.37585 0.3368
(c=4)

a 3.77178 3.76215 3.92891 4.02383 3.85815 4.25671
ala 0.94295 0.94054 0.98223 1.00598 0.96454 1.06418
bias -0.2282 -0.23785 -0.07109 0.02383 -0.14185 0.25671
mse 1.04845 0.98378 0.62269 0.52584 0.50324 0.39045

(0=4.5)

a 4.14513 4.14615 4.32806 4.54114 4.34621 4.68037
ala 092114 0.92137 0.96179 1.00914 0.96582 1.04008
bias -0.35487 -0.35385 -0.17194 0.04114 -0.15379 0.18037
mse 1.25159 1.11118 0.76365 0.75709 0.68786 0.37595
(o=5)

a 4.47345 4.52825 4.64977 4.94459 4.76539 5.23125
ala 0.89469 0.90565 0.92995 0.98892 0.95308 1.04625
bias -.52655 -0.47175 -0.35023 0.05541 -0.23461 0.23125
mse 1.73166 1.57773 0.89733 0.86493 0.69886 0.60925

{(0=5.5)

a 4.93299 4.93895 5.10335 5.27133 5.13894 5.54848
ala 0.89691 0.89799 0.92788 0.95842 0.93435 1.00882
bias -0.56701 -0.56105 -0.39665 -0.22867 -0.36106 0.04848
mse 2.30634 1.97147 1.23558 1.13158 1.01008 0.62762
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(e=T)
a 5.92540 6.24862 6.52122 6.86723 6.56350 7.00532
ala 0.84649 0.89266 0.93160 0.98103 0.93764 1.00076
bias -1.07460 -0.75138 -0.47878 0.13277 -0.43650 0.00532
mse 3.86808 2.87388 1.96821 2.01563 1.72771 0.99661
(c=9)
a 8.02517 8.20184 8.55943 8.74782 8.49851 9.04407
ala 0.65838 0.69429 0.72458 0.76303 0.72928 1.00490
bias -0.97483 -0.79816 -0.44057 0.25218 -0.50149 0.04407
mse 5.90422 5.61540 3.57874 3.74796 3.28100 1.80931
Table 3.2. MLE of ¢ for GGD
n=15 n=20 n=30 n=40 n=50 n=100
(cc=3)

q 0.76931 0.77788 0.77297 0.79601 0.80465 0.79164
q/q 0.96164 0.97235 0.96622 0.99501 1.00581 0.98955

ias -0.03069 -0.02212 -0.02703 -0.00399 0.00465 -0.00836
mse 0.00409 0.00219 0.00229 0.0008 0.00088 0.00017

(0e=3.5)

q 0.77433 0.78244 0.78011 0.79398 0.80098 0.79341
c}/q 0.96791 0.97805 0.97514 0.99247 1.00123 0.99176
bias -0.02567 -0.01756 -0.01989 -0.006 0.00098 -0.0066
mse 0.00366 0.002 0.00198 0.00093 0.00088 0.00018
(a=4)

q 0.77267 0.78381 0.78524 0.79372 0.79686 0.79594
qlq 0.96584 0.97976 0.98155 0.99215 0.99608 0.99493
bias -0.02733 -0.01619 -0.01476 -0.00628 -0.00314 -0.00406
mse 0.00455 0.0019 0.00161 0.0008 0.00076 0.0002

(c=4.5)

(2 0.77708 0.78112 0.78887 0.79196 0.79446 0.79624
q/q 0.97136 0.9764 0.98609 0.98995 0.99308 0.9953
bias -0.02292 -0.01888 -0.01113 -0.00804 -0.00554 -0.00376
mse 0.00311 0.0026 0.00118 0.00083 0.00077 0.00022

(c=5)
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q 0.77331 0.78381 0.78547 0.79171 0.79394 0.79552
glq 0.96664 097976 098183 098964  0.99243 0.9944
bias -0.02669 -0.01615 -0.01453 -0.00829 -0.00606 -0.00448
mse 0.00424 0.00192 0.00205 0.00082 0.00069 0.00024

(0=5.5)

q 0.7753 0.7792 0.7904 0.79323 0.79497 0.79749
q/ q 0.9691 0.97402 0.988 0.99153 0.99371 0.99686
bias -0.02473 -0.02078 -0.00961 -0.00677 -0.00503 -0.00251
mse 0.0038 0.00415 0.00109 0.00077 0.00068 0.00023

(e=7)

q 0.77450 0.77830 0.78999 0.79335 0.79501 0.79792
qlq 0.96813 0.97288 0.98749 0.99169 0.99376 0.99740
bias -0.02550 -0.02170 -0.01001 -0.00665 -0.00499 -0.00208
mse 0.00400 0.00325 0.00107 0.00074 0.00061 0.00021

(0=9)

q 0.77592 0.78189 0.78759 0.79392 0.79516 0.79790
qlq 0.96991 0.97736 0.98449 0.99240 0.99395 0.99738
bias -0.02408  -0.01811 -0.01241 -0.00608 -0.00484 -0.00210
mse 0.00333 0.00228 0.00149 0.00067 0.00059 0.00020

Table 3.3. MLE of the reliability (survival) for GGD.

n=135 n=20 n=30 n=40 n=50 n=700
(e=3)

SMLE 0.66344 0.68216 0.68711 0.70739 0.71794 0.72235
M 0.6961 0.6961 0.6961 0.69611 0.6961 0.6961
S'MLE /S 0.95308 0.97997 0.98708 1.01621 1.03137 1.03771
bias -0.03266 -0.01394 -0.00899 0.01129 0.02184 0.02625

(0=3.5)
S 0.68506 0.71075 0.70202 0.7429 0.74125 0.7704

MLE
S 0.75082 0.75082 0.75082 0.75082 0.75082 0.75082
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SMLE /S 0.91242 0.94663 0.935 0.98948 0.98726 1.0261
bias -0.06576 -0.04007 -0.04879 -0.0079 -0.00957 0.0196
(o=4)
,§'MLE 0.70331 0.73275 0.75171 0.78183 0.77583 0.80567
S 0.79568 0.79568 0.79568 0.79568 0.79568 0.79568
SMLE /S 0.8839 0.92091 0.94474 0.98259 0.97504 1.01256
bias -0.09238 -0.06293 -0.04397 -0.01385 -0.01986 0.00999
(0=4.5)
S’MLE 0.7487 0.75941 0.7936 0.81643 0.80868 0.83558
S 0.83247 0.83247 0.83247 0.83247 0.83247 0.83247
,§'MLE /S 0.89937 091224 0.9533 0.98073 0.97142 1.00374
bias -0.08378 -0.07306 -0.03887 -0.01604 -0.02379 0.00311
(0=5)
S‘MLE 0.76499 0.79571 0.80827 0.84154 0.83571 0.86559
S 0.86263 0.86263 0.86263 0.86263 0.86263 0.86263
,§MLE /S 0.88681 0.92242 0.93698 0.97555 0.96879 1.00342
bias -0.09764 -0.06692 -0.05436 -0.02109 -0.02692 0.00295
(a=5.5)
S‘MLE 0.8023 0.81225 0.84777 0.86289 0.85957 0.88478
S 0.88737 0.88737 0.88737 0.88737 0.88737 0.88737
S’MLE /S 0.90414 0.91535 0.95537 0.97241 0.96867 0.99708
bias -0.08506 -0.07512 -0.0396 -0.02448 -0.0278 -0.00259
(e=7)
S’MLE 0.85568 0.87771 0.90910 0.92505 0.91857 0.93525
S 0.93791 0.93791 0.93791 0.93791 0.93791 0.93791
S'MLE /S 0.91233 0.93582 0.96928 0.98629 0.97939 0.99717
bias -0.08223 -0.06019 -0.02881 -0.01286 -0.01933 -0.00266
(c=9)
S’MLE 0.92937 0.94128 0.95451 0.96367 0.96127 0.97079
S 0.97193 0.97193 0.97193 0.97193 0.97193 0.97193
S’MLE /S 0.95621 0.96846 0.98207 0.99149 0.98903 0.99883
bias -0.04257 -0.03066 -0.01743 -0.00827 -0.01066 -0.00114
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Table 3.4. MME of afor GGD (g=0.8)

n=135 n=20 n=30 n=40 n=50 n=100

(o=3)
a 3.02393 3.06404 3.1362 3.0875 3.09378 3.14695
adla 1.00798 1.02135 1.04540 1.02917 1.03126 1.04898
bias 0.02393 0.06404 0.13620 0.08751 0.09378 0.14695
mse 0.43636 0.30341 0.16923 0.20031 0.18865 0.04635

(e=5)
a 5.09459 5.12369 5.11619 5.08078 5.17539 5.18626
ala 1.01892 1.02473 1.02324 1.01616 1.03508 1.03725
bias 0.09459 0.12369 0.11619 0.08078 0.17539 0.18626
mse 0.79132 0.79394 0.38989 0.38684 0.18423 0.09797

(e=7)
a 7.13021 7.25615 7.25504 7.13829 7.09905 7.11561
ala 1.01860 1.03659 1.03643 1.01976 1.01415 1.01860
bias 0.13021 0.25615 0.25504 0.13829 0.09905 0.11561
mse 2.73316 1.73803 1.34890 0.90111 0.49984 0.21317

(0=9)
a 9.30225 9.26125 9.36248 9.23779 9.23536 9.25333
ala 1.03358 1.02903 1.04028 1.02642 1.02615 1.02815
bias 0.30225 0.26125 0.36248 0.23779 0.23536 0.25333
mse 5.14173 2.51509 2.55868 2.00101 1.34925 0.24848

Table 3.5. MME of ¢ for GGD (q=0.8)

n=13 n=20 n=30 n=40 n=50 n={00

()
q 0.78458 0.78842 0.78674 0.79082 0.7915 0.791%4
i /q 0.98073 0.98553 0.98343 0.98852 0.98938 0.98993
bias -0.0154 -0.01158 -0.0133 -0.0092 -0.0085 -0.0081
mse 0.00207 0.001614 0.00104 0.00073 0.00069 0.00025
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(o=5)

cj 0.78807 0.79057 0.79159 0.79434 0.79242 0.7942
qA /q 0.98509 0.98822 0.98949 0.99292 0.99053 0.99275
bias -0.0119 -0.0094 -0.0084 -0.6057 -0.0076 -0.0058
mse 0.00132 0.00107 0.00062 0.00044 0.00037 0.00016
(=T7)

c} 0.79075 0.79136 0.79207 0.79544 0.79502 0.79621
qA / q 0.98843 0.98920 0.99009 0.99430 0.99378 0.99526
bias -0.00925 -0.00864 -0.00793 -0.00456 -0.00498 -0.00379
mse 0.00130 0.00082 0.00058 0.00036 0.00031 0.00012
(=9)

q“ 0.78999 0.79252 0.79287 0.79516 0.79485 0.79583
C} / q 0.98749 0.99065 0.99109 0.99395 0.99356 0.99479
bias -0.01001 -0.00748 -0.00713 -0.00484 -0.00515 -0.00417
mse 0.00121 0.00070 0.00054 0.00033 0.00029 0.00011

Table 3.6. MME of the reliability (survival) for GGD (¢g=0.8)
n=15 n=20 n=30 n=40 n=50 n=100
(a=3)
S‘MME 0.65593 0.67151 0.67532 0.68099 0.68364 0.69106
S 0.6961 0.6961 0.6961 0.6561 0.6961 0.6961
S‘MME /S 0.94229 0.96468 0.97015 0.97829 0.9821 0.99276

bias -0.0402 -0.0246 -0.0209 -0.0151 -0.0125 -0.005
(o=5)

S‘MME 0.84214 0.84931 0.85111 0.85507 0.85612 0.86048

S 0.86263 0.86263 0.86263 0.86263 0.86263 0.86263

S!S | 097624 098455 098664 099123  0.99245 0.9975

bias -0.0205 -0.0133 -0.0115 -0.0076 -0.0065 -0.0022
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(e=T7)
S‘MME 0.92843 0.93255 0.93351 0.93522 0.93366 0.93570

S 0.93791 0.93791 0.93791 0.93791 0.93791 0.93791

SMME /S 0.98990 0.99428 0.99531 0.99713 0.99547 0.99764
bias -0.00947  -0.00536 -0.00440 -0.00269  -0.00425 -0.00221
(0=9)
S’MME 0.96731 0.96895 0.97039 0.97081 0.97054 0.97151

S 0.97193 0.97193 0.97193 0.97193 0.97193 0.97193

S‘MME /S 0.99524 0.99693 0.99841 0.99884 0.99856 0.99957
bias -0.00462  -0.00298 -0.00155 -0.00112  -0.00139 -0.00042
Table 3.7. MME of a for GGD (¢=0.4)
n=[5 n=20 n=30 n=40 n=50 n=100
(0=3)

a 3.35567 3.42543 3.31663 3.44737 3.42609 3.52529
ala 1.11856 1.14181 1.10554 1.14912 1.14203 1.17510
bias 0.35567 0.42543 0.31663 0.44737 0.42609 0.52529
mse 0.55167 0.47185 0.53954 0.43035 0.44888 0.35633
(0=5)

a 5.82868 5.72013 5.58576 5.59616 5.57552 5.58659
ala 1.16574 1.14403 1.11715 1.11923 1.1151 1.11732
bias 0.82868 0.72013 0.58576 0.59616 0.57552 0.58659
mse 1.85823 0.95561 0.39551 0.36753 0.37899 0.34706
(a=7)

a 8.5960 8.5679 8.4314 8.5897 8.4675 8.1439
ala 1.2280 1.2240 1.2045 1.2271 1.2096 1.2280
bias 1.5960 1.5679 1.4314 1.5897 1.4675 1.1439
mse 4.5183 4.4192 3.6180 4.6100 4.2044 2.9572
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(0=9)

a 10.7984 11.0738 10.8662 11.0918 11.0480 11.0570

ala 1.1998 1.2304 1.2074 1.2324 1.2276 1.2286
bias 1.7984 2.0738 1.8662 2.0918 2.0480 2.0570
mse 5.8604 6.1611 4.8435 5.5718 5.3431 5.4794

Table 3.8. MME of ¢ for GGD ( g=0.4)
n=15 n=20 n=30 n=40 n=50 n=100

(0e=3)

q 0.25935 0.27022 0.28096 0.28608 0.28723 0.29045
q/q 0.64838 0.67556 0.70239 0.71519 0.71808 0.72614
bias -0.14065  -0.12978  -0.11904  -0.11392  -0.11277  -0.10954
mse 0.03257 0.02582 0.02003 0.0165 0.0167 0.01367
(0=5)

q 0.30336 0.31293 0.31682 0.32247 0.32367 0.32845
q/q 0.75839 0.78233 0.79205 0.80617 0.80917 0.82112
bias -0.09664  -0.08707  -0.08318  -0.07753  -0.07633  -0.07155
mse 0.01529 0.0122 0.01002 0.00809 0.00768 0.00601
(e=T)

q 0.31459 0.32132 0.32524 0.32921 0.33029 0.33875
Glq 0.78646 0.80331 0.81309 0.82302 0.82573 0.84687
bias -0.08541  -0.07868  -0.07476  -0.07079  -0.06971  -0.06125
mse 0.01255 0.01002 0.00839 0.00685 0.00686 0.00474
(0=9)

q 0.32691 0.33015 0.33311 0.33550 0.33608 0.34534
qg/q 0.81728 0.82537 0.83278 0.83875 0.84019 0.86335
bias -0.07309  -0.06985  -0.06689  -0.06450  -0.06392  -0.05466
mse 0.00990 0.00822 0.00675 0.00559 0.00546 0.00349
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Table 3.9. MME of the reliability (survival) for GGD (¢=0.4)

n=15 n=20 n=30 n=40 n=50 n=100
(0=3)
S 000393  0.00493  0.00579 000650 000668  0.00727
S 0.03041 003041 003041 003041 003041  0.03041
Swe’S | 012032 016203 019057 021671 021977 023905
bias 002647 -0.02548  -0.02461  -0.02382  -0.02372  -0.02314
(o=5)
Sine 001488 001704 001770  0.01936 001965  0.02117
S 005016 005016 005016 005016 005016  0.05016
Swwe!S | 020666 033979 035285 038590 039164 042198
bias 003528 -0.03312  -0.03246  -0.03080  -0.03052  -0.02899
(o=7)
S 0.02618 002897 003027 003273 003280  0.03575
S 006952 006952 006952 006952  0.06952  0.06952
Swie!S | 037656 041676 043545 047086 047183 051432
bias 004334 -0.04054  -0.03924  -0.03678  -0.03672  -0.03376
(0=9)
S 0.03959 004250 004368 004615  0.04636  0.05299
S 008847 008847 008847 008847 008847  0.08847
Swe’S | 044748 048136 049368 052161 052399 059891
bias L0.04888  -0.04589  -0.04480  -0.04233  -0.04211  -0.03549




