• Title/Summary/Keyword: Maximum Heat Rate

Search Result 648, Processing Time 0.031 seconds

An Experimental Study on the Cooling Characteristics of the Liquid Cooling Radiator of the Natural Convection Type by Using the PCM (PCM을 적용한 자연대류형 수냉식 방열기의 냉각특성에 관한 실험적 연구)

  • Sung, Dae-Hoon;Kim, Joung-Ha;Yun, Jae-Ho;Kim, Woo-Seung;Peck, Jong-Hyeon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.324-329
    • /
    • 2008
  • The liquid cooling effect of a natural convection type radiator by using the PCM has been investigated experimentally. The radiator size is $423{\times}295{\times}83$ mm and PCM container size is $398{\times}270{\times}26$ mm. The objective is elapsed time higher than maximum time to reach for maximum operating temperature of a general liquid cooling radiator. This study, in order to study on the effects of the phase-change phenomenon, carried out the various mass flow rate, input electric power, ambient and melting point of three type PCM. For the above experimental parameter, the melting time was performed about 180/250/560 min at input power 150 W and ambient $30^{\circ}C$ from using the three type PCM(PCM_S1/S2/S3) respectively. Furthermore, the effects of the thermal dissipation was decreased higher input power than lower input power at heating block and melting time of PCM. However, the effects of mass flow rate did not nearly affect of the thermal performance especially.

  • PDF

Frost behavior of a fin surface with temperature variation along heat exchanger fins (열교환기 휜에 따라 온도 분포를 갖는 휜 표면에서의 서리층 거동)

  • Kim, Jung-Soo;Kim, Min-Soo;Lee, Kwan-Soo;Kim, Ook-Joong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2091-2096
    • /
    • 2007
  • This paper presents a mathematical model for predicting the frost behavior formed on heat exchanger fins, considering fin heat conduction under frosting condition. The model is composed of air-side, the frost layer, and fin region, and they are coupled to the frost layer. The frost behavior is more accurately predicted with fin heat conduction considered (Case A) than with a constant fin surface temperature assumed (Case B). The results indicate that the frost thickness and heat transfer rate for Case B are over-predicted in most regions of the fin, as compared to those for Case A. Also, for Case A, the maximum frost thickness varies little with the fin length variations, and the extension of the fin length over 30 mm contributes insignificantly to heat transfer.

  • PDF

The characteristics of heat transfer coefficient for falling-film evaporation on a horizontal tube with aqueous LiBr solution (LiBr 수용액의 수평관 유하액막 증발에 있어서의 열전달계수 특성)

  • Ji, Yong-Hae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.294-302
    • /
    • 1997
  • Falling-film evaporation experiments for aqueous solution of lithium bromide (LiBr) were performed on a horizontal smooth 19.05-mm-dia copper tube. Average heat transfer coefficients were obtained with varied film Reynolds numbers, system pressures, LiBr concentrations and degrees of wall superheat. Heat transfer coefficients increase with increasing system pressure and decreasing concentration. For degrees of wall superheat, the heat transfer coefficient did not't show the distinct trend. For this experimental ranges, heat transfer coefficients showed maximum values at an optimal film Reynolds number. The results of this work were compared with pool boiling data reported previously, and it was shown that the heat transfer performance is superior to the pool boiling.

Analysis of Heat Flow and Thermal Stress for Divertors (디버터의 열유동 및 열응력 해석 1)

  • Lee, Sang-Yun;Kim, Hong-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.238-245
    • /
    • 1999
  • For the optimal design of plasma facing components of a fusion reactor, thorough understanding of thermal behavior of high heat. nux components are required. The purpose of this research is to investigate the characteristics of heat flow and thermal stress in divertors which are exposed to high heat load varing with time and space-Numerical simulations of heat now and thermal stress for three types of diverter are performed using finite volume method and finite element method. Respectly, commercial FLUENT code are used in the heat flow simulation, and maximum surface temperature, temperature distribution and cooling rate are calculated. Commercial ABQUS code are used for calculating temperature distribution. thermal stress, strain and displacement. Through this computer simulation. design data for cooling system and Structural provided.

  • PDF

Analysis for Thermal Performance of Axially Grooved Heat Pipe for Solar Collector (그루브형 태양열 집열용 히트파이프의 열성능 해석)

  • Hong, J.K.;Suh, J.S.;Byon, G.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2123-2128
    • /
    • 2004
  • In this study, analysis is made for the effects of groove shape on the thermal performance of a axial groove heat pipe. The mathematical models of two-phase flow in grooved heat pipe are presented for the capillary limitation in steady state. Generally, the heat pipe performance depends on the capillary pressure and liquid flow. The friction force of liquid flow through the groove increases with the groove width decreased, and then the capillary pressure is improved in the gas-liquid interface of groove. Therefore, the optimal groove width shaper exists for the maximum thermal performance of heat pipe. In this paper, the optimal groove shape and scale are presented by considering both capillary pressure and liquid flow.

  • PDF

Study on the Exhaust Heat Recovery Equipment in a Factory - On the Performance of a U-shape Multitube Heat Exchanger - (공장폐열(工場廢熱) 회수장치(回收裝置)에 관한 연구(硏究) -U자형(字型) 다관식(多管式) 열교환기(熱交換機)의 성능(性能)에 관하여-)

  • Kim, Yung Bok;Song, Hyun Kap
    • Journal of Biosystems Engineering
    • /
    • v.8 no.2
    • /
    • pp.49-61
    • /
    • 1983
  • U shape multitube heat exchanger was equipped in the flue to recover the exhaust heat from the boiler system. The fluids of the exhaust heat recovery equipment were the flue gas as the hot fluid, and the water as the cold fluid. The flow geometry of the fluids was cross flow - two pass, the hot fluid being mixed and the cold fluid unmixed. The results of the theoretical and the experimental analysis and the economic evaluation are summarized as follows. 1) The heat exchanger effectiveness and the temperature efficiency of the hot fluid were about 35% when the fuel consumption rate was 140 - 150 L/15min. The temperature efficiency for the cold fluid ranged from 3.0% to 4.5%. The insulation efficiency ranged from 85% to 98%, which was better than the KS air preheater insulation efficiency of 90%. 2) The relationship between the fuel consumption rate, F, and the outlet temperature, $T_{h2}$, of the flue gas from the heat exchanger was $T_{h2}$ = 0.927F + 110. In order to prevent the low temperature corrosion from the coagulation of $SO_3$, it is necessary to maintain the fuel consumption rate above 82 L/15min. 3) The ratio of the exhaust heat from the boiler system to the total energy consumption was about 14.5%. With the installation of the exhaust heat recovery equipment, the energy recovery ratio to the exhaust heat was about 25%. Accordingly, about 3.6% of the total fuel consumption was estimated to be saved. 4) Economic analysis indicated that the installation of the exhaust heat recovery equipment was feasible to save the energy, because the capital reocvery period was only 10 months when the fuel consumption rate was 80 L/15min. 4 months when it was 160 L/15min. 5) Based on the theoretical and the experimental analysis, it was estimated to save the energy of about 18 million Won per year, if four heat exchangers are installed in a factory. 6) A further study is recommended to identify the relationship among the flow rate of the exhaust gas, the size of the heat exchanger and the capacity of the air preheater. For a maximum heat recovery from the exhaust gas an automatic control system is required to control the flow rate of the cold fluid depending on the boiler load.

  • PDF

Effect of Operating Conditions of a Fan-Coil Unit with an Oval Tube Type Heat Exchanger on Non-Dimensional Performance Coefficient (타원관 열교환기를 적용한 팬코일 유닛의 운전 조건이 무차원 성능계수에 미치는 영향)

  • Yoon, Jaedong;Lee, Younghoon;Sung, Jaeyong
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • In this study, the effect of operating conditions of fan-coil unit with an oval tube type heat exchanger on its non-dimensional performance coefficient has been investigated. Pressure drops and heat transfer rates were measured under heating condition for various water flow rates, inlet temperatures and wind speeds. As a non-dimensional performance coefficient, Colburn j-factor was evaluated. The results show that the most sensitive parameter on heat flux is the inlet temperature, which affects the heat flux 4.7 and 7.2 times more than the wind speed and water flow rate, respectively. On the other hand, the Colburn j-factor as a non-dimensionalized index decreases with the wind speed, and has an maximum when the wind speed is about 1 m/s. the Colburn j-factor increases slowly with the water flow rate and inlet temperature but at a certain range of inlet temperature, the opposite phenomenon is found.

An Experimental Study on the Effects of Operating Variables on the Cooling and Heating Performance of Geothermal Heat Pump (지열 히트펌프에서 운전변수가 냉난방 성능에 미치는 영향에 대한 실험연구)

  • Chang, Keun-Sun;Kang, Hee-Jeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.562-570
    • /
    • 2011
  • In this research, an experimental study is performed to investigate the effects of system operating variables on the cooling and heating characteristics of heat pump system using geothermal heat source and carbon dioxide as a refrigerant. System variables analyzed include compressor frequency, electronic expansion valve opening, refrigerant charge, secondary fluid temperature and flow rate. Results show that optimum refrigerant charge and electronic expansion valve opening position exist at the maximum point of COP curve, and both cooling and heating capacity increase but COPs decrease with the increase of compressor frequency. The change of a secondary fluid temperature leads to variation of overheat area and enthalpy difference in the evaporator and gas cooler. which again results in considerable variations of cooling and heating capacity and COP. In the case of effects of secondary water fluid flow rate, both cooling capacity and COP increase with the increase of secondary flow in evaporator or gas cooler, whereas heating capacity and COP decrease with the increase of flow rate in gas cooler.

Performence Characteristics and Analysis Effect of Maximum Power Saving Device in Metal Parts Heat Treatment Company (금속 부품 열처리업체의 최대전력절감장치 동작 특성 및 효과 분석)

  • Chang, Hong-Soon;Han, Young-Sub;Hwang, Ik-Hwan;Seo, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.40-44
    • /
    • 2014
  • In this paper, maximum power is the lowering device using the facility's energy use and peak load electricity through analyzing attitude should like to make it reduce its power base rate. Simulator to manage the demand for power, a maximum electric power base power from electronic watt-hour meters by a device's signal, predictive power, the current power by computing the goal of power for less than Maximum peak power and peak shift, so that you can manage, and peak York, which role you want a cut Metal heat treatment result which analyzes the data, demand for electricity company over the years of analyzing the characteristics of each load, and effects and Reducing power consumption device every month identified seven Sequence control to the load system and successful power control is about showing that the defined goals.

Thermoelastic Finite Element Analysis of Double horizontal Subsurface Cracks Due to Sliding Surface Traction (마찰열을 고려한 미끄럼 접촉시 내부 복수 수평균열 전파해석)

  • 이진영;김석삼;채영훈
    • Tribology and Lubricants
    • /
    • v.18 no.3
    • /
    • pp.219-227
    • /
    • 2002
  • A linear elastic fracture mechanics analysis of double subsurface cracks propagation in a half-space subjected to moving thermomechanical surface traction was performed using the finite element method. The effect of frictional heat at the sliding surface on the crack growth behavior is analyzed in terms of the thermal load and peclet number. The crack propagation direction is predicted in light of the magnitudes of the maximum shear and tensile stress intensity factor ranges. When moving thermomechanical surface traction exists, subsurface horizontal cracks are propagation in-plane crack growth rate at the beginning but they are propagation out-of-plane crack growth rate by the frictional heat which is occurrence by the repeated sliding contact.