• 제목/요약/키워드: Maximum Force

검색결과 2,326건 처리시간 0.028초

굽힘 붕괴 성능 향상을 위한 센터 필라 설계 (Center Pillar Design for High Bending Collapse Performance)

  • 강성종;박명재
    • 한국자동차공학회논문집
    • /
    • 제21권4호
    • /
    • pp.128-134
    • /
    • 2013
  • High bending collapse performance (maximum resistance force and mean resistance force) of body center pillar is an important design target for vehicle safety against side impact. In this study, effect of the upper section shape and the thickness of outer reinforcement on bending collapse performance was investigated for the center pillar of a large passenger car. First, through bending collapse analyses using simple models with uniform section, an optimized center pillar upper section was chosen. Next, bending collapse performance for various models of the actual center pillar with changing the thickness of outer reinforcement were analyzed. The finally designed model showed distinctive enhancement in bending collapse performance nearly without weight increase.

유용방향법 최적화 알고리즘을 이용한 트랙터 클러치 최적설계 (Design Optimization of Tractor Clutch Mechanism Systems by Using Feasible Direction Method)

  • 조희근;김경원;이인복
    • Journal of Biosystems Engineering
    • /
    • 제35권5호
    • /
    • pp.287-293
    • /
    • 2010
  • In order to optimize an agricultural tractor clutch mechanism system, its structural static and kinematic mechanism were analyzed. The operating force of the mechanical tractor clutch system is currently not appropriate to drive comfortably. So it is needed to reduce the clutch operating force by applying advanced engineering design techniques. In the present study, an optimization technology is applied to the design of tractor clutch systems to reduce the operating force. As a result of the optimization using 2 link-angles and 1 link-length which are the main design variables of the clutch linkage system, the maximum pushing force of the maximum clutch pedal was found 182.8N, 14% decreased compared to the existing clutch system. The effectiveness of the optimum design is certified by menas of an experiment.

부하토크외란관측기와 속도센서리스 벡터제어를 이용한 철도모의장치의 Anti-Slip 제어 (Anti-Slip Control of Railway Vehicle Using Load Torque Disturbance Observer and Speed Sensor-less Vector Control)

  • 이상집;권중동;김은기;조정민;전기영;이승환;오봉환;이훈구;김용주;한경희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(2)
    • /
    • pp.891-894
    • /
    • 2004
  • This paper estimate coefficient of adhesion through speed sensor-less vector control and load torque disturbance observer used for maximum tractive force control. And also proposes anti-slip control algorithm, which controls torque force of motor in order to keep the estimated adhesion force in maximum adhesion by controlling PI torque with the differential value of estimated adhesion force coefficient.

  • PDF

Parametric Analysis of Slamming Forces: Compressible and Incompressible Phases

  • Campana, E.F.;Carcaterra, A.;Ciappi, E.;Iafrati, A.
    • Journal of Ship and Ocean Technology
    • /
    • 제4권1호
    • /
    • pp.21-27
    • /
    • 2000
  • The slamming force occurring in the free fall impact of cylindrical bodies on the water surface is analyzed in both compressible and incompressible stages. In the compressible phase the hydrodynamic analysis is carried on by the acoustic approximation, obtaining a closed form expression for the maximum impact force. The incompressible analysis is approached through and unsteady boundary element method to compute the free surface evolution and the slamming force on the body. A similar behavior seems to characterize the maximum slamming force versus a dimensionless mass parameter.

  • PDF

브러시 없는 직류 선형 모터의 추력 계산 방법의 비교 (The Comparison of thrust computational methods of a brushless DC linear motor)

  • 최문석;김용일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.32-34
    • /
    • 1997
  • For a given brushless DC linear motor, we suggest the numerical prediction methods to analyze it's thrust characteristics. First, we calculate the magnetic flux density by the finite element method, and we then compute the maximum thrust with three computational methods - a Lorentz equation, a Maxwell stress method and a virtual work method. To confirm the accuracy of the computational methods, we measure the thrust of the linear motor made by our laboratory with a force-torque sensor. Also, we calculate the thrust by the measured back electromotive force. To choose the appropriate method for a specified application, we compare the maximum thrusts of the computational method and the calculation by the back electromotive force with the measured one. We conclude that the Maxwell stress method is turned out the best because it has the most accurate results among three computational methods and it is more convenient than the calculation method by the back electromotive force.

  • PDF

Gimballing Flywheel and its Novel Reluctance Force-type Magnetic Bearing with Low Eddy Loss and Slight Tilting Torque

  • Tang, Jiqiang;Wang, Chun'e;Xiang, Biao
    • Journal of Magnetics
    • /
    • 제18권4호
    • /
    • pp.432-442
    • /
    • 2013
  • For magnetically suspended flywheel (MSFW) with gimballing capability, demerits of Lorentz force-type magnetic bearings and common reluctance force-type magnetic bearings are analyzed, a novel reluctance forcetype magnetic bearing (RFMB) including radial and axial magnetic bearing units with 4 separate biased permanent magnets and two conical stators is presented. By equivalent magnetic circuits' method, its magnetic properties are analyzed. To reduce the eddy loss, it was designed as radial poles with shoes and its rotor made of Iron-based amorphousness. Although the uniformity of magnetic flux density in the conical air gap determines mainly the additional tilting torque, the maximum additional tilting torques is 0.05Nm and the rotor tilting has no influence on its forces when the rotor tilts or the maximum changes does not exceed 14% when the rotor drifts and tilts simultaneously. The MSFW with this RFMB can meet the maneuvering requirement of spacecraft theoretically.

극수변화에 따른 비접촉 와전류 제동기의 제동 특성 (The Braking Performance of Touch Free Linear Eddy Current Brake According to The number of Poles)

  • 하경호;김영균;홍정표;김규탁;강도현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.91-93
    • /
    • 1998
  • This paper describes the braking performance of the eddy current brake for high speed trains according to the number of poles. The eddy current brake systems have to be equipped with the maximum braking force and deceleration in the given volume or mass, high braking force rate, as small normal forces as possible and stable construction. The parameters, such as the number of poles, electric ampere turns, slot width have influence on the braking force characteristics. In this paper, the effect of braking performance from the variation of the number poles is calculated by using FEM, the number of the pole which makes the maximum braking force is proposed.

  • PDF

전처리 방법에 따른 냉동 복숭아의 품질 특성 (Effects of Various Pretreatments on Quality Attributes of Frozen and Thawed Peaches)

  • 박종진;손영란;김경미;조용식;김하윤
    • 산업식품공학
    • /
    • 제22권4호
    • /
    • pp.328-336
    • /
    • 2018
  • 본 연구에서는 품종 및 전처리방법에 따른 복숭아의 냉해동 특성을 비교하였다. 전처리 없이 냉해동한 대옥계와 황도는 변색과 maximum force 증가, 드립로스 발생 현상을 보였는데, 이러한 문제점들은 전처리 방법에 의해 개선할 수 있었다. 전처리 직후 냉동 전에 전처리 별로 수분함량을 비교했을 때 sucrose를 포함한 삼투건조 시 수분이 감소하였으며 이는 해동 후 drip loss 감소에 영향을 주었다. 변색과 성분 및 항산화능력의 감소는 SB 3분 이상, ascorbic acid를 포함한 삼투건조 시 크게 개선되었다. Maximum force는 steam blanching, water blanching 시간이 증가할수록 감소하였으며, ACS의 경우 다른 삼투건조 처리구에 비해 높은 값을 보였다. 두 품종 모두 sucrose를 포함한 삼투건조 시 Brix가 크게 증가하였으며 pH와 산도는 품종 별로 차이는 있었으나 전처리 방법에 따라서는 큰 차이가 없었다. 물성 및 색도, 드립로스 등으로 판단하였을 때 steam blanching 3분 처리구가 전처리 조건 중 가장 적절한 방법으로 생각된다.

지대치 형태에 따른 Post core의 치근내부 및 지지조직의 응력분석 (STRESS ANALYSIS OF ROOT AND SUPPORTING TISSUES BY VARIOUS POST CORE DESIGN)

  • 김진;방몽숙
    • 대한치과보철학회지
    • /
    • 제31권4호
    • /
    • pp.468-481
    • /
    • 1993
  • The Purpose of this study was to analyze the stresses and displacements of various post and core. The Finite element models of central incisors were divided into seven types according to the various amount of remaining tooth structures. $10kgf/mm^2$ force was applied respectively as follows : 1) Horizontal on the labial surface 2) $26^{\circ}$ diagonal direction on the lingual surface. Material property, geometry, and load condition of each model were inputted to the two dimensional ANSYS 4.4A finite element program : stresses and displacements were analyzed. Results were follows : 1. In the case of $130^{\circ}$ shoulder post and core, Maximum tensile and shear stresses were observed in the crown margin. 2. Maximum shear stress was about 29% reduced by contrabevel. 3. In the case of 1mm axial tooth structure, Maximum tensile stress observed in the dentin. 4. In the case of but joint of cervix, Maximum stress concentration was observed in the dentin by the inclined and horizontal force. 5. Horizontal force produced the extraordinary high stresses in dentin and supporting structures. 6. The amount of remaining tooth structure affected the level of stress significantly and it determined the location of stress concentration.

  • PDF

Numerical analysis of sheet pile wall structure considering soil-structure interaction

  • Jiang, Shouyan;Du, Chengbin;Sun, Liguo
    • Geomechanics and Engineering
    • /
    • 제16권3호
    • /
    • pp.309-320
    • /
    • 2018
  • In this paper, a numerical study using finite element method with considering soil-structure interaction was conducted to investigate the stress and deformation behavior of a sheet pile wall structure. In numerical model, one of the nonlinear elastic material constitutive models, Duncan-Chang E-v model, is used for describing soil behavior. The hard contact constitutive model is used for simulating the behavior of interface between the sheet pile wall and soil. The construction process of excavation and backfill is simulated by the way of step loading. We also compare the present numerical method with the in-situ test results for verifying the numerical methods. The numerical analysis showed that the soil excavation in the lock chamber has a huge effect on the wall deflection and stress, pile deflection, and anchor force. With the increase of distance between anchored bars, the maximum wall deflection and anchor force increase, while the maximum wall stress decreases. At a low elevation of anchored bar, the maximum wall bending moment decreases, but the maximum wall deflection, pile deflection, and anchor force both increase. The construction procedure with first excavation and then backfill is quite favorable for decreasing pile deflection, wall deflection and stress, and anchor forces.