Journal of Korean Institute of Industrial Engineers
/
v.26
no.4
/
pp.363-375
/
2000
In this paper we propose a content-based image retrieval method that can search large image databases efficiently by color, texture, and shape content. Quantized RGB histograms and the dominant triple (hue, saturation, and value), which are extracted from quantized HSV joint histogram in the local image region, are used for representing global/local color information in the image. Entropy and maximum entry from co-occurrence matrices are used for texture information and edge angle histogram is used for representing shape information. Relevance feedback approach, which has coupled proposed features, is used for obtaining better retrieval accuracy. Simulation results illustrate the above method provides 77.5 percent precision rate without relevance feedback and increased precision rate using relevance feedback for overall queries. We also present a new indexing method that supports fast retrieval in large image databases. Tree structures constructed by k-means algorithm, along with the idea of triangle inequality, eliminate candidate images for similarity calculation between query image and each database image. We find that the proposed method reduces calculation up to average 92.9 percent of the images from direct comparison.
Journal of Information Science Theory and Practice
/
v.2
no.1
/
pp.6-21
/
2014
This paper proposes a novel knowledge extraction system, TAKES (Two-step Approach for Knowledge Extraction System), which integrates advanced techniques from Information Retrieval (IR), Information Extraction (IE), and Natural Language Processing (NLP). In particular, TAKES adopts a novel keyphrase extraction-based query expansion technique to collect promising documents. It also uses a Conditional Random Field-based machine learning technique to extract important biological entities and relations. TAKES is applied to biological knowledge extraction, particularly retrieving promising documents that contain Protein-Protein Interaction (PPI) and extracting PPI pairs. TAKES consists of two major components: DocSpotter, which is used to query and retrieve promising documents for extraction, and a Conditional Random Field (CRF)-based entity extraction component known as FCRF. The present paper investigated research problems addressing the issues with a knowledge extraction system and conducted a series of experiments to test our hypotheses. The findings from the experiments are as follows: First, the author verified, using three different test collections to measure the performance of our query expansion technique, that DocSpotter is robust and highly accurate when compared to Okapi BM25 and SLIPPER. Second, the author verified that our relation extraction algorithm, FCRF, is highly accurate in terms of F-Measure compared to four other competitive extraction algorithms: Support Vector Machine, Maximum Entropy, Single POS HMM, and Rapier.
For a reliable patient set-up verification, better portal films are needed to track relevant features. Simulator films are compared with portal films as a reference image in radiotherapy planning. This shows some possibilities of the use of image information of simulator images for enhancement and restorations of portal images which are very poor in quality compared with the simulator images. This paper present an approach that combine an associative memory, a kind of artificial neural networks with fuzzy image enhancement technique using genetic algorithm which determines the fuzzy region of membership function by the use of maximum entropy principles. A higher portal image quality than conventional technique is achieved.
This paper aims to extract an ObjectProperty-UsageMethod relation, in particular the HerbalMedicinalProperty-UsageMethod relation of the herb-plant object, as a semantic relation between two related sets, a herbal-medicinal-property concept set and a usage-method concept set from several web documents. This HerbalMedicinalProperty-UsageMethod relation benefits people by providing an alternative treatment/solution knowledge to health problems. The research includes three main problems: how to determine EDU (where EDU is an elementary discourse unit or a simple sentence/clause) with a medicinal-property/usage-method concept; how to determine the usage-method boundary; and how to determine the HerbalMedicinalProperty-UsageMethod relation between the two related sets. We propose using N-Word-Co on the verb phrase with the medicinal-property/usage-method concept to solve the first and second problems where the N-Word-Co size is determined by the learning of maximum entropy, support vector machine, and naïve Bayes. We also apply naïve Bayes to solve the third problem of determining the HerbalMedicinalProperty-UsageMethod relation with N-Word-Co elements as features. The research results can provide high precision in the HerbalMedicinalProperty-UsageMethod relation extraction.
Journal of The Geomorphological Association of Korea
/
v.24
no.2
/
pp.91-101
/
2017
Quantitative forecasting methods based on spatial data and geographic information system have been used in predicting the landslide location. This study compared the simulated results of logistic, Bayesian, and maximum entropy models to understand the uncertainties of each model and identify the main factors that influence landslide. The study area is Boeun gun where 388 landslides occurred in the year of 1998. The verification results showed that the AUC of the three models was 0.84. However, the landslide susceptibility distribution of Maxent model was different from those of the other two models. With the same landslide occurrence data, the result of high susceptible area in Maxent model is smaller than Logistic or Bayesian. Maxent model, however, proved to be more efficient in predicting landslide than the other two models. In Maxent's simulations, the responsible factors for landslide susceptibility are timber age class, land cover, timber diameter, crown closure, and soil drainage. The results suggest that it is necessary to consider the possibility of overestimation when using Logistic or Bayesian model, and forest management around the study area can be an effective way to minimize landslide possibility.
Objectives : We aim to assist in choosing an appropriate method for word extraction when analyzing East Asian Traditional Medical texts based on unsupervised learning. Methods : In order to assign ranks to substrings, we conducted a test using one method(BE:Branching Entropy) for exterior boundary value, three methods(CS:cohesion score, TS:t-score, SL:simple-ll) for interior boundary value, and six methods(BExSL, BExTS, BExCS, CSxTS, CSxSL, TSxSL) from combining them. Results : When Miss Rate(MR) was used as the criterion, the error was minimal when the TS and SL were used together, while the error was maximum when CS was used alone. When number of segmented texts was applied as weight value, the results were the best in the case of SL, and the worst in the case of BE alone. Conclusions : Unsupervised-Learning-Based Word Extraction is a method that can be used to analyze texts without a prepared set of vocabulary data. When using this method, SL or the combination of SL and TS could be considered primarily.
The influence of crystallization treatment on the structure, magnetic properties and magnetocaloric effect of $Gd_{71}Ni_{29}$ melt-spun ribbons has been investigated in detail. Annealing of the melt-spun samples at 610 K for 30 min, a majority phase with a $Fe_3C$-type orthorhombic structure (space group, Pnma) and a minority phase with a CrB-type orthorhombic structure (space group, Cmcm) were obtained in the amorphous matrix. The amorphous melt-spun ribbons undergo a second-order ferromagnetic to paramagnetic phase transition at 122 K. For the annealed samples, two magnetic phase transitions caused by amorphous matrix and $Gd_3Ni$ phases occur at 82 and 100 K, respectively. The maximum magnetic entropy change $(-{\Delta}S_M)^{max}$ is $9.0J/(kg{\cdot}K)$ (5T) at 122 K for the melt-spun ribbons. The values of $(-{\Delta}S_M)^{max}$ in annealed ribbons are 1.0 and $5.7J/(kg{\cdot}K)$, corresponding to the two adjacent magnetic transitions.
Al-Bataineh, Nezar;Al-Qudah, Mahmoud A.;Abu-Orabi, Sultan;Bataineh, Tareq;Hamaideh, Rasha S.;Al-Momani, Idrees F.;Hijazi, Ahmed K.
Corrosion Science and Technology
/
v.21
no.1
/
pp.9-20
/
2022
The aim of this paper is to study corrosion inhibition of Aluminum with Capparis decidua extract. The study was performed in a 1.0 M solution of hydrochloric acid (HCl) and was monitored both by measuring mass loss and by using electrochemical and polarization methods. A scanning electron microscopy (SEM) technique was also applied for surface morphology analysis. The results revealed high inhibition efficiency of Capparis decidua extract. Our data also determined that efficiency is governed by temperature and concentration of extract. Optimum (88.2%) inhibitor efficiency was found with maximum extract concentration at 45 o C. The results also showed a slight diminution of aluminum dissolution when the temperature is low. Based on the Langmuir adsorption model, Capparis decidua adsorption on the aluminum surface shows a high regression coefficient value. From the results, the activation enthalpy (∆H#) and activation entropy (∆S#) were estimated and discussed. In conclusion, the study clearly shows that Capparis decidua extract acted against aluminum corrosion in acidic media by forming a protective film on top of the aluminum surface.
Guangwei Lin;Yi Zhang;Enjian Cai;Taisen Zhao;Zhaoyan Li
Smart Structures and Systems
/
v.32
no.1
/
pp.61-81
/
2023
This study presents an ensemble learning based Bayesian model updating approach for structural damage diagnosis. In the developed framework, the structure is initially decomposed into a set of substructures. The autoregressive moving average (ARMAX) model is established first for structural damage localization based structural motion equation. The wavelet packet decomposition is utilized to extract the damage-sensitive node energy in different frequency bands for constructing structural surrogate models. Four methods, including Kriging predictor (KRG), radial basis function neural network (RBFNN), support vector regression (SVR), and multivariate adaptive regression splines (MARS), are selected as candidate structural surrogate models. These models are then resampled by bootstrapping and combined to obtain an ensemble model by probabilistic ensemble. Meanwhile, the maximum entropy principal is adopted to search for new design points for sample space updating, yielding a more robust ensemble model. Through the iterations, a framework of surrogate ensemble learning based model updating with high model construction efficiency and accuracy is proposed. The specificities of the method are discussed and investigated in a case study.
This paper presents the solid-state synthesis of insoluble Prussian blue (Fe4[Fe(CN)6]3·xH2O, PB) in a ball mill, utilizing the fundamental components of PB. Solid-state synthesis offers several advantages, such as being solvent-free, quantitative, and easily scalable for industrial production. Traditionally, the solid-state synthesis of PB has been limited to the reaction between iron(II/III) ions and hexacyanoferrate(II/III) complex ions, essentially an extension of the solution-based coprecipitation method to solid-state reaction. Taking a bottom-up approach, a reaction is designed where the reactants consist of the basic building blocks of PB: Fe2+ ions and CN- ions. The reaction, with a molar ratio of Fe2+ and CN- corresponding to 1:2.8, yields PB, while a ratio of 1:6.6 results in a mixture of potassium hexacyanoferrate(II) (K4Fe(CN)6), potassium chloride (KCl), and potassium cyanide (KCN). This synthetic approach holds promise for environmentally friendly methods to synthesize multimetallic PB with maximum entropy in nearly quantitative yield.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.