• Title/Summary/Keyword: Maximum Dose

Search Result 1,208, Processing Time 0.03 seconds

Radiation Absorbed Dose Calculation Using Planar Images after Ho-166-CHICO Therapy (Ho-166-CHICO 치료 후 평면 영상을 이용한 방사선 흡수선량의 계산)

  • 조철우;박찬희;원재환;왕희정;김영미;박경배;이병기
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.155-162
    • /
    • 1998
  • Ho-l66 was produced by neutron reaction in a reactor at the Korea Atomic Energy Institute (Taejon, Korea). Ho-l66 emits a high energy beta particles with a maximum energy of 1.85 MeV and small proportion of gamma rays (80 keV). Therefore, the radiation absorbed dose estimation could be based on the in-vivo quantification of the activity in tumors from the gamma camera images. Approximately 1 mCi of Ho-l66 in solution was mixed into the flood phantom and planar scintigraphic images were acquired with and without patient interposed between the phantom and scintillation camera. Transmission factor over an area of interest was calculated from the ratio of counts in selected regions of the two images described above. A dual-head gamma camera(Multispect2, Siemens, Hoffman Estates, IL, USA) equipped with medium energy collimators was utilized for imaging(80 keV${\pm}$10%). Fifty-nine year old female patient with hepatoma was enrolled into the therapeutic protocol after the informed consent obtained. Thirty millicuries(110MBq) of Ho-166-CHICO was injected into the right hepatic arterial branch supplying hepatoma. When the injection was completed, anterior and posterior scintigraphic views of the chest and pelvic regions were obtained for 3 successive days. Regions of interest (ROIs) were drawn over the organs in both the anterior and posterior views. The activity in those ROIs was estimated from geometric mean, calibration factor and transmission factors. Absorbed dose was calculated using the Marinelli formula and Medical Internal Radiation Dose (MIRD) schema. Tumor dose of the patient treated with 1110 MBq(30 mCi) Ho-l66 was calculated to be 179.7 Gy. Dose distribution to normal liver, spleen, lung and bone was 9.1, 10.3, 3.9, 5.0 % of the tumor dose respectively. In conclusion, tumor dose and absorbed dose to surrounding structures were calculated by daily external imaging after the Ho-l66 therapy for hepatoma. In order to limit the thresholding dose to each surrounding organ, absorbed dose calculation provides useful information.

  • PDF

Effect of Low Magnetic Field on Dose Distribution in the Partial-Breast Irradiation (부분유방 방사선조사 시 저자기장이 선량분포에 미치는 영향)

  • Kim, Jung-in;Park, So-Yeon;Lee, Yang Hoon;Shin, Kyung Hwan;Wu, Hong-Gyun;Park, Jong Min
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.208-214
    • /
    • 2015
  • The aim of this study is to investigate the effect of low magnetic field on dose distribution in the partial-breast irradiation (PBI). Eleven patients with an invasive early-stage breast carcinoma were treated prospectively with PBI using 38.5 Gy delivered in 10 fractions using the $ViewRay^{(R)}$ system. For each of the treatment plans, dose distribution was calculated with magnetic field and without magnetic field, and the difference between dose and volume for each organ were evaluated. For planning target volume (PTV), the analysis included the point minimum ($D_{min}$), maximum, mean dose ($D_{mean}$) and volume receiving at least 90% ($V_{90%}$), 95% ($V_{95%}$) and 107% ($V_{107%}$) of the prescribed dose, respectively. For organs at risk (OARs), the ipsilateral lung was analyzed with $D_{mean}$ and the volume receiving 20 Gy ($V_{20\;Gy}$), and the contralateral lung was analyzed with only $D_{mean}$. The heart was analyzed with $D_{mean}$, $D_{max}$, and $V_{20\;Gy}$, and both inner and outer shells were analyzed with the point $D_{min}$, $D_{max}$ and $D_{mean}$, respectively. For PTV, the effect of low magnetic field on dose distribution showed a difference of up to 2% for volume change and 4 Gy for dose. In OARs analysis, the significant effect of the magnetic field was not observed. Despite small deviation values, the average difference of mean dose values showed significant difference (p<0.001), but there was no difference of point minimum dose values in both sehll structures. The largest deviation for the average difference of $D_{max}$ in the outer shell structure was $5.0{\pm}10.5Gy$ (p=0.148). The effect of low magnetic field of 0.35 T on dose deposition by a Co-60 beam was not significantly observed within the body for PBI IMRT plans. The dose deposition was only appreciable outside the body, where a dose build-up due to contaminated electrons generated in the treatment head and scattered electrons formed near the body surface.

Development of a Thermoplastic Oral Compensator for Improving Dose Uniformity in Radiation Therapy for Head and Neck Cancer (두경부암 방사선치료 시 선량 균일도 향상을 위한 Thermoplastic 구강 보상체의 개발)

  • Choi, Joon-Yong;Won, Young-Jin;Park, Ji-Yeon;Kim, Jong-Won;Moon, Bong-Ki;Yoon, Hyong-Geun;Moon, Soo-Ho;Jeon, Jong-Byeong;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.269-278
    • /
    • 2012
  • Aquaplast Thermoplastic (AT) is a tissue-equivalent oral compensator that has been developed to improve dose uniformity at the common boundary and around the treated area during radiotherapy in patients with head and neck cancer. In order to assess the usefulness of AT, the degree of improvement in dose distribution and physical properties were compared to those of oral compensators made using paraffin, alginate, and putty, which are materials conventionally used in dental imprinting. To assess the physical properties, strength evaluations (compression and drop evaluations) and natural deformation evaluations (volume change over time) were performed; a Gafchromic EBT2 film and a glass dosimeter inserted into a developed phantom for dose verification were used to measure the common boundary dose and the beam profile to assess the dose delivery. When the natural deformation of the oral compensators was assessed over a two-month period, alginate exhibited a maximum of 80% change in volume from moisture evaporation, while the remaining tissue-equivalent properties, including those of AT, showed a change in volume that was less than 3%. In a free-fall test at a height of 1.5 m (repeated 5 times as a strength evaluation), paraffin was easily damaged by the impact, but AT exhibited no damage from the fall. In compressive strength testing, AT was not destroyed even at 8 times the force needed for paraffin. In dose verification using a glass dosimeter, the results showed that in a single test, the tissue-equivalent (about 80 Hounsfield Units [HU]) AT delivered about 4.9% lower surface dose in terms of delivery of an output coefficient (monitor unit), which was 4% lower than putty and exhibited a value of about 1,000 HU or higher during a dose delivery of the same formulation. In addition, when the incident direction of the beam was used as a reference, the uniformity of the dose, as assessed from the beam profile at the boundary after passing through the oral compensators, was 11.41, 3.98, and 4.30 for air, AT, and putty, respectively. The AT oral compensator had a higher strength and lower probability of material transformation than the oral compensators conventionally used as a tissue-equivalent material, and a uniform dose distribution was successfully formed at the boundary and surrounding area including the mouth. It was also possible to deliver a uniformly formulated dose and reduce the skin dose delivery.

A Study on Na/Ca Exchange Ratio in Atrial Muscle of Rabbit (토끼 심방근 세포막의 Na/Ca교환 비율에 관한 연구)

  • Kim, Eui-Yong;Hwang, Sang-Ik;Earm, Yung-E;Sung, Ho-Kyung
    • The Korean Journal of Physiology
    • /
    • v.23 no.2
    • /
    • pp.291-299
    • /
    • 1989
  • Na and Ca effects on contracture were studied in order to estimate Na/Ca exchange ratio in the isolated atrial muscle of the rabbit. All experiments were performed in tris-buffered Tyrode solution which was being aerated with 100% $O_2\;and\;kept\;at\;37^{circ}C$. To load intracellular $Na^+,\;10{-6}M$ ouabain or K-free solution were used. Contractures were induced by brier exposure of atrial muscle to Tyrode solution containing various concentrations of Ca or of Na. The results obtained were as follows: 1 ) Increasing the extracellular Ca concentration, the amplitude of contracture also increased and was maximum at 8 mM Ca-Tyrode solution. 2) The relationship between extracellular Ca concentrations and relative amplitude of the contractures showed hyperbolic pattern. By using Hill plot, the line has the slope of 1 12 which means the number of Ca binding sites of the carrier in the cell membrane. 3) The amplitude of the contracture was maximum in 0 mM Na-Tyrode solution and decreased in dose dependent manner when the Na concentration increased. 4) When the relationship between extracellular Na concentrations and the amplitude of contractures was expressed as dose-response curve, the curve showed sigmoid pattern. The line with the slope of 2.82 was obtained by using Hill plot. 5) From above all the results, it is suggested that exchange ratio of Na and Ca via Na/ca exchange system in the atrial muscle of rabbit could be 3:1 approximately.

  • PDF

Effects of Sludge SVI and Chemical Conditioning on Activated Sludge Flotation Thickening (슬러지 SVI와 화학적 개량이 슬러지부상농축에 미치는 영향)

  • Lee, Ki Yong;Kim, Shin Jo;Kwon, Oh Sang;Yeom, Ick Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.349-355
    • /
    • 2010
  • Electroflotation (EF) was conducted for activated sludge thickening to investigate the effects of sludge SVI (sludge volume index) and chemical conditioning. Return sludge samples were used for the experiment, which were collected from municipal wastewater treatment plants. The performance of sludge thickening was significantly dependent on sludge SVI. For the sludges with SVI values in a range from 50 to about 150 mL/g, the maximum float content decreased rapidly from 8.4 to 3.5% and flotation compressibility followed the same pattern. In cases of sludges with SVI higher than 150 mL/g, those results showed low content levels without large changes. Gas/solids ratio tended to increase with an increase in SVI. When polyelectrolyte was added into sludges for the conditioning, compressibility increased up to 75% and gas/solids ratio was reduced up to about 35% under the condition of microbubble production rate of 530 mL/h, however, there was no consistent effect of chemical conditioning on the maximum float solids content; some cases were positive but the others negative. It was expected that the optimum dose of electrolyte depends on sludge SVI and an excessive chemical dose causes a performance deterioration of flotation thickening.

The Pharmacokinetics of Erythromycin in Cultured Paralichthys olivaceus after Oral administration (경구투여에 의한 양식산 넙치내 Erythromycin의 약물동태학적 특성 분석)

  • Seo, Jung-Soo;Jeon, Eun-Ji;Jung, Sung-Hee;Park, Myung-Ae;Kim, Na-Young
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.2
    • /
    • pp.316-321
    • /
    • 2014
  • The pharmacokinetics of erythromycin (EM) after oral administration was studied in the cultured olive flounder, Paralichthys olivaceus, using LC/MS/MS. After single- or multiple-dose administration of EM (50, 100, 200 mg/kg body weight and 50 mg/kg for 5 days) by oral route in olive flounder ($350{\pm}40g$, $22{\pm}0.5^{\circ}C$), the concentration in the serum was determined at 1, 3, 6, 9, 24, 72, 120, 168, 264, 360, 504 and 720 h post-dose. The kinetic profile of absorption, distribution and elimination of EM in serum were analyzed fitting to a two-compartment model by WinNonlin program. The area under the concentration-time curve (AUC), maximum concentration ($C_{max}$), time for maximum concentration ($T_{max}$) following oral administration of 50, 100 and 200 mg/kg b.w. and 50 mg for 5 days. EM was $165.3hr^*{\mu}g/m{\ell}$ ($C_{max}$, $34.63{\mu}g/m{\ell}$; $T_{max}$, 1.56 hr), $212.8hr^*{\mu}g/m{\ell}$ ($C_{max}$, $60.38{\mu}g/m{\ell}$; $T_{max}$, 3.99 hr), and $592.37hr^*{\mu}g/m{\ell}$ ($C_{max}$, $63.01{\mu}g/m{\ell}$; $T_{max}$, 4 hr), respectively. The results of this study related to dosage and ${\mu}{\cdot}$withdrawal times could be used for prescription of EM in field for the treatment of bacterial diseases in olive flounder.

Evaluation of the effect of mechanical deformation on beam isocenter properties of the SC200 scanning beam delivery system

  • Wang, Ming;Zheng, Jinxing;Song, Yuntao;Li, Ming;Zeng, Xianhu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2064-2071
    • /
    • 2020
  • For proton pencil beam scanning (PBS) technology, the accuracy of the dose distribution in a patient is sensitive to the properties of the incident beam. However, mechanical deformation of the proton therapy facility may occur, and this could be an important factor affecting the proton dose distribution in patients. In this paper, we investigated the effect of deformation on an SC200 proton facility's beam isocenter properties. First, mechanical deformation of the PBS nozzle, L-shape plate, and gantry were simulated using a Finite Element code, ANSYS. Then, the impact of the mechanical deformation on the beam's isocenter properties was evaluated using empirical formulas. In addition, we considered the simplest case that could affect the properties of the incident beam (i.e. if only the bending magnet (BG3) has an error in its mounting alignment), and the effect of the beam optics offset on the isocenter characteristics was evaluated. The results showed that the deformation of the beam position in the X and Y direction was less than 0.27 mm, which meets the structural design requirements. Compared to the mechanical deformation of the L-shape plate, the deformation of the gantry had more influence on the beam's isocenter properties. When the error in the mounting alignment of the BG3 is equal to or more than 0.3 mm, the beam deformation at the isocenter exceeds the maximum accepted deformation limits. Generally speaking, for the current design of the SC200 scanning beam delivery system, the effects of mechanical deformation meet the maximum accepted beam deformation limits. In order to further study the effect of the incident beam optics on the isocenter properties, a fine-scale Monte Carlo model including factors relating to the PBS nozzle and the BG3 should be developed in future research.

Evaluation of auto contouring accuracy in 3D planning system (3차원 입체조형치료시 Auto Contouring tool의 유용성 평가)

  • Choi, JM;Ju, SG;Park, JY;Park, YH;Kim, JS
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.35-39
    • /
    • 2002
  • Introduction : It is essential to input patients external contour in 3D treatment plan. We would like to see changes in depth and dose when 3D RTP is operating auto contouring when windows value (Width/Level) differs in this process. Material & Methode : We have analyzed the results with 3D RTP after CT Scanning with round CT Phantom. We have compared and analyzed MU values according to depth changes to Isocenter changing external contour and inputting random Window value. We have watched change values according to dose optimization in 4 directions(LAO, LPO, RAO, RPO), We plan 100 case for exact analyzation. We have results changing window value random to each beam in 100 cans. Result : It showed change between minimum and maximum value in 4 beam is Depth 0.26mm, MU $1.2\%$ in LAO. It showed LPO-Depth 0.13mm, MU $0.9\%$, RAO-Depth 0.2mm MU $0.8\%$, RPO-Depth 0.27mm, MU $1.1\%$ Conclusion : Maximum change in depth 0.27 mm, MU error rate is $0.12\%$ according to Window change. As we can see in these results, it seems Window value change doesn't effect in treatment. However, it seems there needs to select appropriate Window value in precise treatment.

  • PDF

Primary Closure of Deep Penetrating Wounds under Local Anesthesia with Dental Lidocaine HCL 28 Ampules in Maxillofacial Regions -Report of two cases - (치과용 Lidocaine 28 앰플로 국소마취 하에 1차 봉합한 악안면 심부 관통성 열창 -증례 보고-)

  • Kim, Jong-Bae;Yoo, Jae-Ha
    • Journal of The Korean Dental Society of Anesthesiology
    • /
    • v.1 no.1 s.1
    • /
    • pp.26-31
    • /
    • 2001
  • The wide deep penetrating wound of maxillofacial region should be early closed under emergency general anesthesia for the prevention of complications of bleeding, infection, shock & residual scars. But, if the emergency general anesthesia wound be impossible because of pneumoconiosis, obstructive pulmonary disease & hypovolemic shock, early primary closure should be done under local anesthesia by use of much amount of the anesthetic solution. The maximum dose of dental lidocaine (2% lidocaine with 1 : 100,000 epinephrine) is reported to 7 mg/kg under 500 mg (13.8 ampules) in normal adult. But the maximum permissible dose of dental lidocaine can be changed owing to the general health, rapidity of injection, resorption, distribution & excretion of the drug. The blood level of overdose toxicity is above $4.0{\mu}g/ml$ in central nervous & cardiovascular system. The injection of dental lidocaine 1-4 ampules is attained to the blood level of $1{\mu}g/ml$ in normal healthy adult. The duration of anesthetic action in the dental 2% lidocaine hydrochloride with 1 : 100.000 epinephrine is 45 to 75 minutes and the period to elimination is about 2 to 4 hours. Therefore, authors selected the following anesthetic methods that the first injection of 6 ampules is applied into the deeper periosteal layer for anesthetic action during 1 hour, the second injection into the deeper muscle & fascial layer, the third injection into the superficial muscle and fascial layer, the fourth injection into the proximal skin & subcutaneous tissue and the fifth final injection into the distal skin & subcutaneous tissue. The total 26-28 ampules of dental lidocaine were injected into the wound as the regular time interval during 5-6 hours, but there were no systemic complications, such as, agitation, talkativeness, convulsion and specific change of vital signs and consciousness.

  • PDF

Four-Dimensional Computed Tomography for Gated Radiotherapy: Retrospective Image Sorting and Evaluation

  • Lim, Sang-Wook;Park, Sung-Ho;Back, Geum-Mun;Ahn, Seung-Do;Shin, Seong-Soo;Lee, Sang-Wook;Kim, Jong-Hoon;Choi, Eun-Kyuong;Kwon, Soo-Il
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2005.04a
    • /
    • pp.71-74
    • /
    • 2005
  • To introduce the four-dimensional computed tomography (4DCT, Light Speed RT, General Electric, USA) scanner newly installed in our department and evaluate its feasibility for gated radiotherapy. Respiratory signal measured by real-time position management (RPM$^{\circledR}$, Varian Medical, USA) was recorded in synchronization with the 4DCT scanner. 4DCT data were acquired in axial cine mode and sorted retrospective image based on respiratory phase. PTVs delineated from helical CT and 4DCT images were compared. The PTV delineated from conventional helical CT images was 2 cc larger than that from 4DCT images. Dose in PTV of the plan from retrospective CT was 99.3% (minimum=72.0%, maximum=106.5%) and that of helical CT plan was 95.2% (minimum=24.1%, maximum=106.4%) of prescribed dose. Comparing with DVHs of both plan, the coverage for 4CDT plan was 3.7% improved. It is expected that 4DCT could improve tumor control and reduce radiation toxicity for liver cancer.

  • PDF