• 제목/요약/키워드: Maximum Dose

검색결과 1,201건 처리시간 0.022초

COMPUTATIONAL DETERMINATION OF NEUTRON DOSE EQUIVALENT LEVEL AT THE MAZE ENTRANCE OF A MEDICAL ACCELERATOR FACILITY

  • Kim, Hong-Suk;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • 제32권1호
    • /
    • pp.15-20
    • /
    • 2007
  • An empirical formula fur the neutron dose equivalent at the maze entrance of medical accelerator treatment rooms was derived on the basis of a Monte Carlo simulation. The simulated neutron dose equivalents around the Varian medical accelerator by the MCNPX code were employed. Two cases of target rotational planes were considered: parallel and perpendicular to maze walls. Most of the maximum neutron dose equivalents at the doorway were found when the target rotational planes were parallel to maze walls and the beams were directed to the inner maze entrances. The neutron dose equivalents at the outer maze entrances were calculated for about 698 medical accelerator facilities which were generated from the geometry configurations of running treatment rooms, based on such gantry rotation that produces the maximum neutron dose at the doorway. The results calculated with the empirical formula in this study were compared with those calculated by the Kersey method for 7 operating facilities. It was found that the maximum disagreement between the calculation of this study and that of the Kersey method was a factor of 8.54 with the value calculated by the Kersey method exceeding that of this study. It was concluded that the kersey method estimated the neutron dose equivalent at the doorway computed by MCNPX more conservatively than this study technique.

연속재평가방법에 가속화 단계를 적용한 MTD 추정법 (Maximum tolerated dose estimation using continual reassessment method in Phase I Clinical Trial)

  • 권도희;김동재
    • 응용통계연구
    • /
    • 제32권5호
    • /
    • pp.741-752
    • /
    • 2019
  • 제1상 임상시험의 주목적은 최대허용용량(maximum tolerated dose; MTD)을 결정하는 것이다. MTD 결정을 통해 다음 임상시험에 사용될 용량이 제한되므로 투약용량 발견 시험이라고도 불리며 매우 중요한 단계이다. MTD를 결정하는 방법에는 대표적으로 DM 방법, SM 방법, CRM 방법이 있다. 본 논문에서는 기존 수정된 CRM 방법에 초기가속화 단계를 적용하여 낮은 용량에 다수의 피험자가 할당되는 문제점을 보완하는 새로운 MTD 추정 방법을 제안하였고 기존 방법들과의 비교를 위해 모의실험을 실시하였다.

Intensity Modulated Radiation Therapy of Brain Tumor

  • Kim, Sung-Kyu;Kim, Myung-Se
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.61-64
    • /
    • 2002
  • As intensity modulated radiation therapy compared with conventional radiation therapy, tumor target dose increased and normal tissues and critical organs dose reduced. In brain tumor, treatment planning of intensity modulated radiation therapy was practiced in 4MV, 6MV, 15MV X-ray energy. In these X-ray energy, was considered the dose distribution and dose volume histogram. As 4MV X-ray compared with 6MV and 15MV, maximum dose of right optic-nerve increased 10.1 %, 8.4%. Right eye increased 5.2%, 2.7%. And left optic-nerve, left eye, optic chiasm and brainstem incrased 1.7% - 5.2%. Even though maximum dose of PTV and these critical organs show different from 1.7% - 10.1% according to X-ray energies, these are a piont dose. Therefore in brain tumor, treatment planning of intensity modulated radiation therapy in 9 treatment field showed no relation with energy dependency.

  • PDF

고(高) 에너지 전자선(電子線) 치료시(治療時) 체내(體內) 공동(空洞)으로 인(因)한 선량분포(線量分布)의 변동(變動) (Perturbation of Dose Distributions for Air Cavities in Tissue by High Energy Electron)

  • 추성실;이도행;최병숙
    • Journal of Radiation Protection and Research
    • /
    • 제1권1호
    • /
    • pp.22-30
    • /
    • 1976
  • The perturbation of dose distribution adjacent to cavities in high energy electron has shown that the percentage of dose increase varies markedly as a function of the build-up layer, the length and thickness of the cavities, and the electron energy. The dose distribution showed that cavities similar in size to those encountered in the head and neck measured by industrial film dosimetry and corrected by ionization chambers. The most increased doses by measuring are resulted in a localized dose of up to 130% of that measured at the depth of maximum dose within a homogeneous tissue equivalent phantom. The measured values and correction factors of dose perturbation due to air cavities showed in diagrams and would be summarized as follows. 1. In $8{\sim}12MeV$ electron beams, the most marked dose is observed when the build-up layer thickness is 0.5cm and cavity volume is $2{\times}2{\times}2cm^3$. 2. The highest dose point is located under cavity when the energy is increased and cavity length is longer. 3. The cavity length at which the maximum percentage dose occurs decreases with increasing energy. 4. The highest percentage cavity doses are obtained when the energy is high, the build-up layer is thin, the thickness of the cavity is large, and the length of the cavity is approximately 1 to 3cm. 5. The doses of upper portion of cavity are less than the standard dose distribution as 5 to 10%. 6. The maximum range of electron beam are extended as much as thickness of cavity. 7. A cavity having a length of 5cm closely approximates a cavity of infinite length.

  • PDF

제 1상 임상시험에서 멈춤 규칙과 SM3 디자인을 이용한 최대허용용량 추정법 (Maximum Tolerated Dose Estimation by Stopping Rule and SM3 Design in a Phase I Clinical Trial)

  • 김병찬;김동재
    • 응용통계연구
    • /
    • 제27권1호
    • /
    • pp.13-20
    • /
    • 2014
  • 제 1상 임상시험의 목적은 피험자가 견딜 수 있는 최대의 용량인 최대허용용량(Maimum Tolerated Dose; MTD)을 추정하는 것이다. 최대허용용량을 추정하는 방법으로는 SM방법, ATD방법, CRM방법 등이 있다. 본 연구에서는 제 1상 임상시험에서 멈춤규칙을 이용한 최대허용용량 추정법을 제안하였다. 제안한 최대허용용량 추정법은 연속재평가방법(Continual Reassessment Method; CRM)과 모의실험을 통해 비교하였다.

Evaluation of electron dose distribution obtained from ADAC Pinnacle system against measurement and Monte Carlo method for breast patients

  • Lee, S.;Lee, R.;Park, D.;S. Suh
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2003년도 제27회 추계학술대회
    • /
    • pp.82-82
    • /
    • 2003
  • Introduction: With the development of dose calculation algorithms for electron beams, 3D RTP systerns are available for electron beam dose distribution commercially. However, no studies evaluated the accuracy of dose calculation with ADAC Pinnacle system for electron beams. So, the accuracy of the ADAC system is investigated by comparing electron dose distributions from ADAC system against the BEAMnrc/DOSXYZnrc. Methods: A total of 33 breast cancer patients treated with 6, 9, and 12MeV electrons in our institution was selected for this study. The first part of this study is to compare the dose distributions of measurement, TPS and the BEAMnrc/DOSXYZnrc code in flat water phantom at gantry zero position and for a 10 ${\times}$ 10 $\textrm{cm}^2$ field. The second part is to evaluate the monitor unit obtained from measurement and TPS. Adding actual breast patient's irregular blocks to the first part, monitor units to deliver 100 cGy to the dose maximum (dmax) were calculated from measurement and 3D RTP system. In addition, the dose distributions using blocks were compared between TPS and the BEAMnrc/DOSXYZnrc code. Finally, the effects of tissue inhomogeneities were studied by comparing dose distributions from Pinnacle and Monte Carlo method on CT data sets. Results: The dose distributions calculated using water phantom by the TPS and the BEAMnrc/ DOSXYZnrc code agreed well with measured data within 2% of the maximum dose. The maximum differences of monitor unit between measured and Pinnacle TPS in flat water phantom at gantry zero position were 4% for 6 MeV and 2% for 9 and 12 MeV electrons. In real-patient cases, comparison of depth doses and lateral dose profiles calculated by the Pinnacle TPS, with BEAMnrc/DOSXYZnrc code has generally shown good agreement with relative difference less than +/-3%. Discussion: For comparisons of real-patient cases, the maximum differences between the TPS and BEAMnrc/DOSXYZnrc on CT data were 10%. These discrepancies were due in part to the inaccurate dose calculation of the TPS, so that it needs to be improved properly. Conclusions: On the basis of the results presented in this study, we can conclude that the ADAC Pinnacle system for electron beams is capable of giving results absolutely comparable to those of a Monte Carlo calculation.

  • PDF

Evaluation of Anticancer Activity of Curcumin Analogues Bearing a Heterocyclic Nucleus

  • Ahsan, Mohamed Jawed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.1739-1744
    • /
    • 2016
  • We report herein an in vitro anticancer evaluation of a series of seven curcumin analogues (3a-g). The National Cancer Institute (NCI US) Protocol was followed and all the compounds were evaluated for their anticancer activity on nine different panels (leukemia, non small cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer and breast cancer) represented by 60 NCI human cancer cell lines. All the compounds showed significant anticancer activity in one dose assay (drug concentration $10{\mu}M$) and hence were evaluated further in five dose assays (0.01, 0.1, 1, 10 and $100{\mu}M$) and three dose related parameters $GI_{50}$, TGI and $LC_{50}$ were calculated for each (3a-g) in micro molar drug concentrations (${\mu}M$). The compound 3d (NSC 757927) showed maximum mean percent growth inhibition (PGI) of 112.2%, while compound 3g (NSC 763374) showed less mean PGI of 40.1% in the one dose assay. The maximum anticancer activity was observed with the SR (leukemia) cell line with a $GI_{50}$ of $0.03{\mu}M$. The calculated average sensitivity of all cell lines of a particular subpanel toward the test agent showed that all the curcumin analogues showed maximum activity on leukemia cell lines with $GI_{50}$ values between 0.23 and $2.67{\mu}M$.

리포좀 포집 PALA의 C-26암 유발 마우스에 대한 항암 효과 (Antitumor Efficacy of Liposomal N-(Phosphonacetyl)-L-Aspartic Acid in C-26 Tumor Bearing Balb/c Mice)

  • 김진석
    • Journal of Pharmaceutical Investigation
    • /
    • 제30권1호
    • /
    • pp.39-45
    • /
    • 2000
  • We have investigated the efficacy of liposome encapsulated N-(phosphonacetyl)-L-aspartic acid (PALA) for the treatment of the C-26 murine colon tumor in Balb/c mice, and have compared it in this regard to free PALA. Healthy female Balb/c mice and C-26 tumor inoculated mice were randomized for the maximum tolerated dose (MTD) study and the in vivo therapy study, and the survival was measured after a single intraperitoneal injection of the drug. The maximum tolerated dose for intraperitoneally administered drug was found to be 750 mg/Kg for free PALA, and was greater than the maximum dose possible (150 mg/Kg) for PALA encapsulated in both DSPC and DSPG liposomes. When drug was administered one day after tumor implantation, 150 mg/Kg of PALA in DSPG liposomes increased the percentage of tumor bearing mice surviving at day 36 from 8% (buffer control) to 88%. In contrast, 150 mg/Kg free PALA increased the day 36 surviving percentage to only 25%. A 150 mg/Kg dose of PALA in DSPC liposomes increased the surviving percentage to 50%, while a 75 mg/Kg dose of PALA in sterically stabilized liposomes increased the surviving percentage to 78%. These results show that PALA in negatively charged or sterically stabilized liposomes can exhibit considerably greater potency than free PALA in C-26 tumor bearing mice.

  • PDF

선량 환산 관례를 이용한 생애유효선량 및 라돈피폭 위험도 예측: 대학 강의실 라돈농도 중심으로 (Prediction for the Lifetime Effective Dose and Radon Exposure Risk by using Dose Conversion Convention: Base on the Indoor Radon Concentration of Lecture Room in a University)

  • 이재승;권대철
    • 대한의용생체공학회:의공학회지
    • /
    • 제39권6호
    • /
    • pp.243-249
    • /
    • 2018
  • The indoor radon concentration was measured in the lecture room of the university and the radon concentration was converted to the amount related to the radon exposure using the dose conversion convention and compared with the reference levels for the radon concentration control. The effect of indoor radon inhalation was evaluated by estimating the life effective dose and the risk of exposure. To measure the radon concentration, measurements were made with a radon meter and a dedicated analysis Capture Ver. 5.5 program in a university lecture room from January to February 2018. The radon concentration measurement was carried out for 5 consecutive hours for 24 hours after keeping the airtight condition for 12 hours before the measurement. Radon exposure risk was calculated using the radon dose and dose conversion factor. Indoor radon concentration, radon exposure risk, and annual effective dose were found within the 95% confidence interval as the minimum and maximum boundary ranges. The radon concentration in the lecture room was $43.1-79.1Bq/m^3$, and the maximum boundary range within the 95% confidence interval was $77.7Bq/m^3$. The annual effective dose was estimated to be 0.20-0.36 mSv/y (mean 0.28 mSv/y). The life-time effective dose was estimated to be 0.66-1.18 mSv (mean $0.93{\pm}0.08mSv$). Life effective doses were estimated to be 0.88-0.99 mSv and radon exposure risk was estimated to be 12.4 out of 10.9 per 100,000. Radon concentration was measured, dose effective dose was evaluated using dose conversion convention, and degree of health hazard by indoor radon exposure was evaluated by predicting radon exposure risk using nominal hazard coefficient. It was concluded that indoor living environment could be applied to other specific exposure situations.

Utilization of Brabender Visco-Amylograph to Detect Irradiated Starches

  • Yi, Sang-Duk;Oh, Man-Jin;Yang, Jae-Seung
    • Preventive Nutrition and Food Science
    • /
    • 제5권1호
    • /
    • pp.20-24
    • /
    • 2000
  • A study was carried out to establish the detection method of irradiated corn, potato, and sweet potato starches. The samples were packed in polyethylene bags and irradiated with 1, 3, 5, 7, 10, and 15 kGy using a Co-60 irradiator. The maximum viscosity of irradiated and unirradiated corn, potato, and sweet potato starches reduced by increase of irradiation dose levels and showed significant differences which clearly showed the effect of irradia-tion dose levels (p<0.05). Regression expressions and coefficients (p<0.000) or corn, potato, and sweet potato starches were y=-38.538x+718.23(r2=0.9761), y=669.97e-0.1372x (r2=0.9820) and y=-42.544x+730.26(r2=0.9939), respectively. Nor-malized parameter A,B and C values showed a dose dependent relationship and were a better parameter for detecting the irradiated starches than that of the maximum viscosity itself.

  • PDF