• Title/Summary/Keyword: Maximum Dose

Search Result 1,201, Processing Time 0.029 seconds

Proofreading of one Ryang based on the Ratio of Maximum and Minimum Dose in the Decoction of ≪Treatise on Cold Damage Diseases≫ (≪상한론≫ 탕제에서 한약 하루 먹는 량 최대와 최소 비율에 근거한 복용량 1 량(兩) 교정)

  • Kim, In-Rak
    • The Korea Journal of Herbology
    • /
    • v.34 no.1
    • /
    • pp.43-50
    • /
    • 2019
  • Objectives : The purpose of this study was to proofread 'one ryang' in the Decoction of ${\ll}$Treatise on Cold Damage Diseases${\gg}$. Methods : I found out the ratio of maximum dose and minimum dose in this book. On the basis of the ratio, I corrected 'one ryang' in diverse decoctions. Results : In any decoction, maximum dose of medicinal medica in one decoction could not exceed four times minimum dose. Specifically, in the case that maximum dose in one decoction is sixteen ryang, it could not exceed eight times minimum dose in the same decoction. Any medicinal medica used in two decoctions or more, its maximum dose could not exceed four times minimum dose in other decoctions. On the basis of these results, it should be changed into three ryangs that are one ryang dose of 'Haematitum' of Seonbokdaeja Tang, 'Ginger' of Bujageongang Tang, Baektong Tang, Baektonggajeodamjep Tang and Senggangsasim Tang. Furthermore it should be changed into two ryangs that are one ryang dose of 'Coptidis Rhizoma' of Sohamhyung Tang, 'Ginger' of Dowha Tang, 'Ginseng Radix' of Whubaksenggangbanhagamchoinsam Tang, 'Polyporus, Poria Sclerotium, Alismatis Rhizoma, Talcum and Asini Corii Colla' of Jeoryeong Tang, 'Cimicifugae Rhizoma, Atractylodis Rhizoma Alba and Anemarrhenae Rhizoma' of Mahuangshengma Tang and 'Cassiae Cortex Interior' of Gyejigamchoryonggolmoryeo Tang. Conclusions : These results suggest that one ryang of thirteen medicinal medica such as Haematitum or Ginger of eleven decoctions such as Seonbokdaeja Tang or Bujageongang Tang should be changed into two or three ryangs.

Maximum Tolerated Dose Estimate by Curve Fitting in Phase I Clinical Trial (제1상 임상시험에서 곡선적합을 이용한 MTD 추정법)

  • Heo, Eun-Ha;Kim, Dong-Jae
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.2
    • /
    • pp.179-187
    • /
    • 2011
  • The purpose of a Phase I clinical trial is to estimate the maximum tolerated dose, MTD, of a new drug. In this paper, the MTD estimation method is suggested by curve fitting the dose-toxicity data to an S-shaped curve. The suggested MTD estimation method is compared with established MTD estimation procedures using a Monte Carlo simulation study.

Maximum Tolerated Dose Estimation Applied Biased Coin Design in a Phase I Clinical Trial

  • Kim, Yu Rim;Kim, Dongjae
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.877-884
    • /
    • 2012
  • Phase I trials determine the maximum tolerated dose(MTD) and the recommended dose(RD) for subsequent Phase II trials. In this paper, a MTD estimation method applied to a biased coin design is proposed for Phase I Clinical Trials. The suggested MTD estimation method is compared to the SM3 method and the NM method (Lee and Kim, 2012) using a Monte Carlo simulation study.

Adjusted maximum tolerated dose estimation by stopping rule in phaseⅠclinical trial (제 1상 임상시험에서 멈춤 규칙을 이용한 수정된 최대허용용량 추정법)

  • Park, Ju Hee;Kim, Dongjae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1085-1091
    • /
    • 2012
  • Phase I clinical trials are designed to identify an appropriate dose; the maximum tolerated dose, which assures safety of a new drug by evaluating the toxicity at each dose-level. The adjusted maximum tolerated dose estimation is presented by stopping rule in phase I clinical trial on this research. The suggested maximum tolerated dose estimation is compared to the standard method3 and NM method using a Monte Carlo simulation study.

Correlation Between Tumorigenic Doses and the Maximum Tolerated Dose of Carcinogens (발암물질의 발암용량과 최대내성용량의 상관관계)

  • 이병무;김근종
    • Environmental Mutagens and Carcinogens
    • /
    • v.19 no.2
    • /
    • pp.108-111
    • /
    • 1999
  • Correlation between the tumorigenic dose (TD) and the maximum tolerated dose (MTD) was examined to search for the most relevant TD values related to the MTD. Using benzo(a)pyrene (B(a)P) 2-yr bioassay data, correlation coefficients between values of $TD_{1-}$50/ and the MTD were estimated from linearized or non-linearlized dose-response curves. The highest correlation coefficients (0.9966-1.0000) were obtained from T $D_{1-}$10/ in linearized dose-response curves while the highest (0.9966-1.0000) were estimated from $TD _{5-}$10/ in non-linearized dose-response eurves. These data suggest that TDs-lo were more closely related to the MTD than the ,$TD_{5-}$10/ in B(a)P 2-yr bioassay and that in lieu of the $TD_{50}$ they could be efficiently applicable to risk assessment and management.ent.

  • PDF

Study on Characteristics of Dose Distribution in Tissue of High Energy Electron Beam for Radiation Therapy (방사선 치료용 고에너지 전자선의 조직 내 선량분포 특성에 관한 연구)

  • Na, Soo-Kyung
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.175-186
    • /
    • 2002
  • The purpose of this study is directly measure and evaluate about absorbed dose change according to nominal energy and electron cone or medical accelerator on isodose curve, percentage depth dose, contaminated X-ray, inhomogeneous tissue, oblique surface and irradiation on intracavitary that electron beam with high energy distributed in tissue, and it settled standard data of hish energy electron beam treatment, and offer to exactly data for new dote distribution modeling study based on experimental resuls and theory. Electron beam with hish energy of $6{\sim}20$ MeV is used that generated from medical linear accelerator (Clinac 2100C/D, Varian) for the experiment, andwater phantom and Farmer chamber md Markus chamber und for absorbe d dose measurement of electron beam, and standard absorbed dose is calculated by standard measurements of International Atomic Energy Agency(IAEA) TRS 277. Dose analyzer (700i dose distribution analyzer, Wellhofer), film (X-OmatV, Kodak), external cone, intracavitary cone, cork, animal compact bone and air were used for don distribution measurement. As the results of absorbed dose ratio increased while irradiation field was increased, it appeared maximum at some irradiation field size and decreased though irradiation field size was more increased, and it decreased greatly while energy of electron beam was increased, and scattered dose on wall of electron cone was the cause. In percentage depth dose curve of electron beam, Effective depth dose(R80) for nominal energy of 6, 9, 12, 16 and 20 MeV are 1.85, 2.93, 4.07, 5.37 and 6.53 cm respectively, which seems to be one third of electron beam energy (MeV). Contaminated X-ray was generated from interaction between electron beam with high energy and material, and it was about $0.3{\sim}2.3\%$ of maximum dose and increased with increasing energy. Change of depth dose ratio of electron beam was compared with theory by Monte Carlo simulation, and calculation and measured value by Pencil beam model reciprocally, and percentage depth dose and measured value by Pencil beam were agreed almost, however, there were a little lack on build up area and error increased in pendulum and multi treatment since there was no contaminated X-ray part. Percentage depth dose calculated by Monte Carlo simulation appeared to be less from all part except maximum dose area from the curve. The change of percentage depth dose by inhomogeneous tissue, maximum range after penetration the 1 cm bone was moved 1 cm toward to surface then polystyrene phantom. In case of 1 cm and 2 cm cork, it was moved 0.5 cm and 1 cm toward to depth, respectively. In case of air, practical range was extended toward depth without energy loss. Irradiation on intracavitary is using straight and beveled type cones of 2.5, 3.0, 3.5 $cm{\phi}$, and maximum and effective $80\%$ dose depth increases while electron beam energy and size of electron cone increase. In case of contaminated X-ray, as the energy increase, straight type cones were more highly appeared then beveled type. The output factor of intracavitary small field electron cone was $15{\sim}86\%$ of standard external electron cone($15{\times}15cm^2$) and straight type was slightly higher then beveled type.

  • PDF

Comparison of plan dosimetry on multi-targeted lung radiotherapy: A phantom-based computational study using IMRT and VMAT

  • Khan, Muhammad Isa;Rehman, Jalil ur;Afzal, Muhammad;Chow, James C.L.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3816-3823
    • /
    • 2022
  • This work analyzed the dosimetric difference between the intensity modulated radiotherapy (IMRT), partial/single/double-arc volumetric modulated arc therapy (PA/SA/DA-VMAT) techniques in treatment planning for treating more than one target of lung cancer at different isocenters. IMRT and VMAT plans at different isocenters were created systematically using a Harold heterogeneous lung phantom. The conformity index (CI), homogeneity index (HI), gradient index (GI), dose-volume histogram and mean and maximum dose of the PTV were calculated and analyzed. Furthermore, the dose-volume histogram and mean and maximum doses of the OARs such as right lung, contralateral lung and non GTV were determined from the plans. The IMRT plans showed the superior target dose coverage, higher mean and maximum values than other VMAT techniques. PA-VMAT technique shows more lung sparing and DA-VMAT increases the V5/10/20 values of contralateral lung than other VMAT and IMRT techniques. The IMRT technique achieves highly conformal dose distribution to the target than other VMAT techniques. Comparing to the IMRT plans, the higher V5/10/20 and mean lung dose were observed in the contralateral lung in the DA-VMAT.

Maximum Tolerated Dose Estimation with Dose De-Escalation Design in a Phase I Clinical Trials (제 1상 임상시험에서 용량 감량을 허용하는 MTD 추정법)

  • Jang, Eunah;Kim, Dongjae
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.7
    • /
    • pp.1115-1123
    • /
    • 2014
  • The main purpose of phase I clinical trials is to estimate the Maximum Tolerated Dose (MTD), which minimizes side effect and assures safety of a new drug by evaluating the toxicity at each dose-level. The conventional MTD estimation methods is Standard method (Storer, 1989; Korn et al., 1994), Accelerated Titration Designs (Simon et al., 1997) and DM method (Dixon and Mood, 1948) etc. In this paper, MTD estimation method with de-escalation is suggested phase I clinical trials. The proposed MTD estimation method is compared to Accelerated Titration Designs, SM3 without de-escalation method and SM3 with de-escalation method using a Monte Carlo simulation.

Two-Stage Maximum Tolerated Dose Estimation by Stopping Rule in a Phase I Clinical Trial (제1상 임상시험에서 Stopping Rule을 이용한 두 단계 MTD 추정법)

  • Lee, Na-Mi;Kim, Dong-Jae
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.57-64
    • /
    • 2012
  • Phase I clinical trials determine the maximum tolerated dose(MTD) of a new drug. In this paper, we proposed a two-stage MTD estimation method by a Stopping rule in a phase I clinical trial. The suggested MTD estimation method is compared to the standard design(SM3) and the continual reassessment method(CRM) using a Monte Carlo simulation study.

Maximum tolerated dose estimation by Biased coin design and stopping rule in Phase I clinical trial (제 1상 임상시험에서 Biased Coin Design과 멈춤규칙을 이용한 MTD 추정법)

  • Jeon, Soyoung;Kim, Dongjae
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.2
    • /
    • pp.137-145
    • /
    • 2020
  • Phase I clinical trials (Dose Finding Studies) are the first step in administering new drugs developed through animal experiments or in vitro experiments to humans. An important area of interest in designing Phase I clinical trials is determining the dose that provides the greatest efficacy and acceptable safe dose to the patient. In this paper, we propose a method to determine the maximum tolerated dose considering efficacy and safety using Biased coin design and stopping rule. The proposed method is compared with existing methods through simulation.