• Title/Summary/Keyword: Maximum Control Force

Search Result 348, Processing Time 0.035 seconds

Optimized Air Force Flight Scheduling Considering Pilot' s Mission Efficiency (조종사 임무 효율을 고려한 공군 비행 스케줄 최적화)

  • Kwon, Min Seok;Yoon, Chan Il;Kim, Jiyong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.116-122
    • /
    • 2020
  • Human and material resource planning is one representative example of Operations Research. Resource planning is important not only in civilian settings but also in military ones. In the Air Force, flight scheduling is one of the primary issues that must be addressed by the personnel who are connected to flight missions. However, although the topic is of great importance, relatively few studies have attempted to resolve the problem on a scientific basis. Each flight squadron has its own scheduling officers who manually draw up the flight schedules each day. While mistakes may not occur while drafting schedules, officers may experience difficulties in systematically adjusting to them. To increase efficiency in this context, this study proposes a mathematical model based on a binary variable. This model automatically drafts flight schedules considering pilot's mission efficiency. Furthermore, it also recommends that schedules be drawn up monthly and updated weekly, rather than being drafted from scratch each day. This will enable easier control when taking the various relevant factors into account. The model incorporates several parameters, such as matching of the main pilots and co-pilots, turn around time, availability of pilots and aircraft, monthly requirements of each flight mission, and maximum/minimum number of sorties that would be flown per week. The optimal solution to this model demonstrated an average improvement of nearly 47% compared with other feasible solutions.

Actuator Control based on Interconnected Heterogeneous Networks (이종 통신망에 연결된 네트워크 기반 액추에이터 제어)

  • Kim, Nayeon;Moon, Chanwoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.57-62
    • /
    • 2017
  • Recently, the use of electronic control units in vehicle has increased. The ECUs are connected to in vehicle networks to process a large amount of information. In this paper, for an actuator that is interconnected to CAN and FlexRay, a FlexRay-CAN gateway is presented and a data packing algorithm with a bisection method of a FlexRay slot is proposed. And, a network based actuator control system and packing map is implemented. With the proposed packing method, contact force sensor data are transferred within the maximum allowed delay to ensure the stability. The proposed method is useful for control of distributed system.

A study of Operation Criteria of Tower-crane for Automatic Transportation Considering Swung Member (양중작업 자동화를 위한 부재진동에 따른 타워크레인의 작업가능 기준 연구)

  • Shin, Yoon-Seok;Jin, Il-Guan;An, Sung-Hoon;Cho, Hun-Hee;Kang, Kyung-In
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.2
    • /
    • pp.108-116
    • /
    • 2008
  • At present, construction automation is a critical solution for the shortage of labor and the aging of skilled workers. Especially, researches for transportation automation are achieved to improve the efficiency as the construction of tall-building construction. Transportation automation needs to control the swung member by the inertia and/or the wind-force at the end of cable. However, previous to control, the presupposition of the swing is heavily difficult work because the inertia and the wind force are irregularly changable according to work condition. Therefore, in this study, dynamic modeling of crane and simulation was performed to find the characteristic of the swing. In the result, the maximum displacement of the swung material was analyzed. And, on the basis of analysis, the criteria to decide workability of automated transportation considering the material size and the wind force onsite was proposed.

Power Control of Small Wind Power System (소형 풍력발전시스템의 출력제어)

  • Kim, Chul-Ho;Lee, Hyun-Chae;Seo, Young-Taek;Cho, Hwan-Kee
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1066_1067
    • /
    • 2009
  • Wind power is one of most promising renewable energy. The output capacity of large wind turbine has been increased for off-shore application. Number of installation of small wind turbine also has been increased for the stand-alone and off-grid application of remote area and recently small wind turbine equipped with lamp on the pole is used for street lamp. Maximum wind energy must be extracted by wind turbine within rated wind speed. Power must be controlled to protect the system such as blade, generator, and power system above the rated wind speed. In this paper, small wind power system of 800W rating for battery charging is implemented and output power control by furling system is verified at wind tunnel test.

  • PDF

Quantitative Analysis of EMG Amplitude Estimator for Surface EMG Signal Recorded during Isometric Constant Voluntary Contraction (등척성 일정 자의 수축 시에 기록한 표면근전도 신호에 대한 근전도 진폭 추정기의 정량적 분석)

  • Lee, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.843-850
    • /
    • 2017
  • The EMG amplitude estimator, which has been investigated as an indicator of muscle force, is utilized as the control input to artificial prosthetic limbs. This paper describes an application of the optimal EMG amplitude estimator to the surface EMG signals recorded during constant isometric %MVC (maximum voluntary contraction) for 30 seconds and reports on assessing performance of the amplitude estimator from the application. Surface EMG signals, a total of 198 signals, were recorded from biceps brachii muscle over the range of 20-80%MVC isometric contraction. To examine the estimator performance, a SNR(signal-to-noise ratio) was computed from each amplitude estimate. The results of the study indicate that ARV(average rectified value) and RMS(root mean square) amplitude estimation with forth order whitening filter and 250[ms] moving average window length are optimal and showed the mean SNR improvement of about 50%, 40% and 20% for each 20%MVC, 50%MVC and 80%MVC surface EMG signals, respectively.

A Study on Early Strength Estimation of Precast Concrete joint Mortar with Microwave (마이크로파에 의한 PC접합모르타르의 조기강도추정에 관한 연구)

  • 원준연;박일용;백민수;이종균;안형준;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.217-222
    • /
    • 2000
  • A large Pc structure building is system that consisted of bearing wall and slab joint. It has general structure stability from unity thar each members tied at joint. The strength of mortar that packing in joint among panels is important to internal force in entire building system. Do, if we could get early strength estimation with microwave. It would bring good construction planning, reduce construction time, and judge building stability and so on. The purpose of this study is to develop early estimation method for making better quality control and constructing good PC panel structure. The results of this study were as follows :1) With sealed molds, reduced moisture volatilization to more than 60% and enlarged 30% accelerated compressive strength than before one. 2) To get more accelerated strength, we should control maximum temperature difference to $30^{\circ}C$ downward 3)Interrelation with 7-day and 28-day strength were 0.831,0.902, and it is above than before one

  • PDF

Effects of temperature on the ratcheting behavior of pressurized 90° elbow pipe under force controlled cyclic loading

  • Chen, Xiaohui;Wang, Xingang;Chen, Xu
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.473-485
    • /
    • 2017
  • Ratcheting behavior of $90^{\circ}$ elbow piping subject to internal pressure 20 MPa and reversed bending 20 kN was investigated using experimental method. The maximum ratcheting strain was found in the circumferential direction of intrados. Ratcheting strain at flanks was also very large. Moreover, the effect of temperature on ratcheting strain of $90^{\circ}$ elbow piping was studied through finite element analysis, and the results were compared with room condition ($25^{\circ}$). The results revealed that ratcheting strain of $90^{\circ}$ elbow piping increased with increasing temperature. Ratcheting boundary of $90^{\circ}$ elbow piping was determined by Chaboche model combined with C-TDF method. The results revealed that there was no relationship between the dimensionless form of ratcheting boundary and temperature.

The study of aerodynamic characteristics to design of optimum jetvane (제트베인 최적 설계를 위한 공기역학 특성 연구)

  • 신완순;길경섭;이택상;박종호;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.1
    • /
    • pp.26-33
    • /
    • 2001
  • Thrust vector control system is control device which is mounted exit of the nozzle to generate pitch, yaw and roll directional force by deflecting flow direction of the supersonic jet from the nozzle. By obtaining control force, jetvane which is exposed in jet flow is working thermal and aerodynamic load. Axial thrust loss and side thrust is affected by shock patterns and interactions between jetvanes according to jetvane geometry and turning angle. In this study, we designed 6 types of jetvane to evaluate pitch, yaw and roll characteristics of ietvane in supersonic flow, and perform the cold flow test in range of turning angles of jetvanes between $0^{\cire}$ and $25^{\cire}$ by $5^{\cire}$ respectively. Also, calculation is going side by side to analyse flow interaction. Results show that there is no interactions between jetvanes upto turning angle 20$^{\circ}$, chord and lead length ratio is very important parameter to aerodynamic performance and maximum thrust loss is appeard to 17% of axial thrust in roll directional control.

  • PDF

Compensation of Periodic Magnetic Saturation Effects for the High-Speed Sensorless Control of PMSM Driven by Inverter Output Power Control-based PFC Strategy

  • Lee, Kwang-Woon
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1264-1273
    • /
    • 2015
  • An inverter output power control based power factor correction (PFC) strategy is being extensively used for permanent magnet synchronous motor (PMSM) drives in appliances because such a strategy can considerably reduce the cost and size of the inverter. In this strategy, PFC circuits are removed and large electrolytic DC-link capacitors are replaced with small film capacitors. In this application, the PMSM d-q axes currents are controlled to produce ripples, the frequency of which is twice that of the AC main voltage, to obtain a high power factor at the AC mains. This process indicates that the PMSM operates under periodic magnetic saturation conditions. This paper proposes a back electromotive-force (back-EMF) estimator for the high-speed sensorless control of PMSM operating under periodic magnetic saturation conditions. The transfer function of the back-EMF estimator is analyzed to examine the effect of the periodic magnetic saturation on the accuracy of the estimated rotor position. A simple compensation method for the estimated position errors caused by the periodic magnetic saturation is also proposed in this paper. The effectiveness of the proposed method is experimentally verified with the use of a PMSM drive for a vacuum cleaner centrifugal fan, wherein the maximum operating speed reaches 30,000 rpm.

Motion Synchronization of Control for Multi Electro-Hydraulic Actuators (가변구조제어기를 이용한 다중실린더 위치동조 제어)

  • Kim, Seong-Hoon;Seo, Jeong-Uk;Yoon, Young-Won;Park, Myeong-Kwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.863-868
    • /
    • 2011
  • This paper presents a method to achieve a synchronous positioning objective for a dual-cylinder electro-hydraulic system with friction characteristics. The control system consists of a VSC (Variable Structure Controller) for each of the hydraulic cylinders and a PID (Proportional-Integral-Derivative) feedback controller. The PID controller is used for controlling the non-synchronous error generated by both cylinders when motion synchronization is carried out. To enhance the position-tracking performance of the individual cylinders friction characteristics is modeled in model, based on the estimated friction force. The simulation and experimental results show that the proposed method can effectively achieve the objective of position synchronization in the dualcylinder electro-hydraulic system, with maximum synchronization error with ${\pm}2\;mm$.