• Title/Summary/Keyword: Maximal Cohen-Macaulay Module

Search Result 4, Processing Time 0.019 seconds

COHEN-MACAULAY MODULES OVER NOETHERIAN LOCAL RINGS

  • Bahmanpour, Kamal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.373-386
    • /
    • 2014
  • Let (R,m) be a commutative Noetherian local ring. In this paper we show that a finitely generated R-module M of dimension d is Cohen-Macaulay if and only if there exists a proper ideal I of R such that depth($M/I^nM$) = d for $n{\gg}0$. Also we show that, if dim(R) = d and $I_1{\subset}\;{\cdots}\;{\subset}I_n$ is a chain of ideals of R such that $R/I_k$ is maximal Cohen-Macaulay for all k, then $n{\leq}{\ell}_R(R/(a_1,{\ldots},a_d)R)$ for every system of parameters $a1,{\ldots},a_d$ of R. Also, in the case where dim(R) = 2, we prove that the ideal transform $D_m(R/p)$ is minimax balanced big Cohen-Macaulay, for every $p{\in}Assh_R$(R), and we give some equivalent conditions for this ideal transform being maximal Cohen-Macaulay.

AMALGAMATED DUPLICATION OF SOME SPECIAL RINGS

  • Tavasoli, Elham;Salimi, Maryam;Tehranian, Abolfazl
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.989-996
    • /
    • 2012
  • Let R be a commutative Noetherian ring and let I be an ideal of R. In this paper we study the amalgamated duplication ring $R{\bowtie}I$ which is introduced by D'Anna and Fontana. It is shown that if R is generically Cohen-Macaulay (resp. generically Gorenstein) and I is generically maximal Cohen-Macaulay (resp. generically canonical module), then $R{\bowtie}I$ is generically Cohen-Macaulay (resp. generically Gorenstein). We also de ned generically quasi-Gorenstein ring and we investigate when $R{\bowtie}I$ is generically quasi-Gorenstein. In addition, it is shown that $R{\bowtie}I$ is approximately Cohen-Macaulay if and only if R is approximately Cohen-Macaulay, provided some special conditions. Finally it is shown that if R is approximately Gorenstein, then $R{\bowtie}I$ is approximately Gorenstein.

EQUIMULTIPLE GOOD IDEALS WITH HEIGHT 1

  • Kim, Mee-Kyoung
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.127-135
    • /
    • 2002
  • Let I be an ideal in a Gorenstein local ring A with the maximal ideal m. Then we say that I is an equimultiple good ideal in A, if I contains a reduction Q = ( $a_1$, $a_2$,ㆍㆍㆍ, $a_{s}$ ) generated by s elements in A and G(I) =(equation omitted)$_{n 0}$ $I^{n}$ / $I^{n+1}$ of I is a Gorenstein ring with a(G(I)) = 1 - s, where s = h $t_{A}$ I and a(G(I)) denotes the a-invariant of G(I). Let $X_{A}$$^{s}$ denote the set of equimultiple good ideals I in A with h $t_{A}$ I = s, R(I) = A [It] be the Rees algebra of I, and $K_{R(I)}$ denote the canonical module of R(I). Let a I such that $I^{n+l}$ = a $I^{n}$ for some n$\geq$0 and $\mu$$_{A}$(I)$\geq$2, where $\mu$$_{A}$(I) denotes the number of elements in a minimal system of generators of I. Assume that A/I is a Cohen-Macaulay ring. We show that the following conditions are equivalent. (1) $K_{R(I)}$(equation omitted)R(I)+as graded R(I)-modules. (2) $I^2$ = aI and aA : I$\in$ $X^1$$_{A}$._{A}$./.