• Title/Summary/Keyword: Max-log-MAP

Search Result 26, Processing Time 0.023 seconds

Bitwise Decomposition Algorithm for Gray Coded M-PSK Signals (Gray 부호화된 M-PSK 신호의 비트 정보 분할 알고리듬)

  • Kim Ki-Seol;Hyun Kwang-Min;Park Sang-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.784-789
    • /
    • 2006
  • In this paper, we propose a bitwise information decomposition algorithm for an M-PSK signal based on the Max-Log-MAP algorithm. In order to obtain the algorithm, we use a coordinate transformation from M-PSK to M-PAM signal space. Using the proposed algorithm, we analyze the performance of a Turbo iterative decoding method. The proposed algorithm can be applicable not only for a communication with PSK and iterative decoding method but for adaptive modulation and coding system.

Iterative Decoding Performance for Gray Coded QAM Signals with I/Q Phase Unbalance (I/Q 위상 불균형을 동반한 Gray 부호화된 QAM 신호의 반복 복호 성능)

  • Kim Ki-Seol;Park Sang-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6A
    • /
    • pp.611-616
    • /
    • 2006
  • In this paper, we propose a practical implementation method of a soft bit decision expression for an R-QAM (Gray coded Rectangular Quadrature Amplitude Modulation) signal based on the Max-Log-MAP algorithm. The parameters of the soft decision expression for the practical implementation can be obtained with simple arithmetic functions associated with some deterministic parameters such as a received value, distances between symbols, and the order of modulation on a signal space. Also, we analyze the performance of an iterative decoding scheme for the QAM signal with I/Q phase unbalance. The unbalance results from the non-ideal characteristic of components such as a phase shifter between in-phase and quadrature paths for quadrature modulator/demondulator.

Reception Performance Evaluation of LDPC-Encoded SOQPSK-TG (LDPC 부호화한 SOQPSK-TG의 수신 성능 평가)

  • Gu, Young Mo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.10
    • /
    • pp.879-882
    • /
    • 2021
  • The telemetry standard adopts SOQPSK-TG with excellent power and bandwidth efficiency as a modulation technique, and LDPC code with excellent performance as an error correction code. The SOQPSK-TG transmitter consists of a precoder and a CPM modulator. Rather than implementing each receiver separately, the reception performance is improved by combining the trellis and implementing it as a Viterbi decoder. In this paper, the reception performance of LDPC-encoded SOQPSK-TG was evaluated by replacing the Viterbi decoder with a max-log-map decoder capable of soft metric output. As a result of computer simulation in AWGN channel, there is an Eb/No performance gain of about more than 0.7~0.8dB compared to the conventional method.

Low-complexity de-mapping algorithms for 64-APSK signals

  • Bao, Junwei;Xu, Dazhuan;Zhang, Xiaofei;Luo, Hao
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.308-315
    • /
    • 2019
  • Due to its high spectrum efficiency, 64-amplitude phase-shift keying (64-APSK) is one of the primary technologies used in deep space communications and digital video broadcasting through satellite-second generation. However, 64-APSK suffers from considerable computational complexity because of the de-mapping method that it employs. In this study, a low-complexity de-mapping method for (4 + 12 + 20 + 28) 64-APSK is proposed in which we take full advantage of the symmetric characteristics of each symbol mapping. Moreover, we map the detected symbol to the first quadrant and then divide the region in this first quadrant into several partitions to simplify the formula. Theoretical analysis shows that the proposed method requires no operation of exponents and logarithms and involves only multiplication, addition, subtraction, and judgment. Simulation results validate that the time consumption is dramatically decreased with limited degradation of bit error rate performance.

Low Complexity Decoder for Space-Time Turbo Codes

  • Lee Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.303-309
    • /
    • 2006
  • By combining the space-time diversity technique and iterative turbo codes, space-time turbo codes(STTCS) are able to provide powerful error correction capability. However, the multi-path transmission and iterative decoding structure of STTCS make the decoder very complex. In this paper, we propose a low complexity decoder, which can be used to decode STTCS as well as general iterative codes such as turbo codes. The efficient implementation of the backward recursion and the log-likelihood ratio(LLR) update in the proposed algorithm improves the computational efficiency. In addition, if we approximate the calculation of the joint LLR by using the approximate ratio(AR) algorithm, the computational complexity can be reduced even further. A complexity analysis and computer simulations over the Rayleigh fading channel show that the proposed algorithm necessitates less than 40% of the additions required by the conventional Max-Log-MAP algorithm, while providing the same overall performance.

Turbo Coded OFDM Scheme for a High-Speed Power Line Communication (고속 전력선통신 시스템의 터보 부호화)

  • Lee, Jae-Sun;Kim, Yo-Cheol;Kim, Jung-Hui;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.190-196
    • /
    • 2009
  • In this paper, performance of a turbo-coded OFDM system is analyzed and simulated in a power line communication channel. Since the power line communication system typically operates in a hostile environment, turbo code has been employed to enhance reliability of transmitted data. The performance is evaluated in terms of bit error probability. As turbo decoding algorithms, MAP (maximum a posteriori), Max-Log-MAP, and SOVA (soft decision Viterbi output) algorithms are chosen and their performances are compared. From simulation results, it is demonstrated that Max-Log-MAP algorithm is promising in terms of performance and complexity. It is shown that performance is substantially improved by increasing the number of iterations and interleaver length of a turbo encoder. The results in this paper can be applied to OFDM-based high-speed power line communication systems.

  • PDF

(Turbo Decoder Design with Sliding Window Log Map for 3G W-CDMA) (3세대 이동통신에 적합한 슬라이딩 윈도우 로그 맵 터보 디코더 설계)

  • Park, Tae-Gen;Kim, Ki-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.9 s.339
    • /
    • pp.73-80
    • /
    • 2005
  • The Turbo decoders based on Log-MAP decoding algorithm inherently requires large amount of memory and intensive complexity of hardware due to iterative decoding, despite of excellent decoding efficiency. To decrease the large amount of memory and reduce hardware complexity, the result of previous research. And this paper design the Turbo decoder applicable to the 3G W-CDMA systems. Through the result of previous research, we decided 5-bits for the received data 6-bits for a priori information, and 7-bits for the quantization state metrics. The error correction term for $MAX^{*}$ operation which is the main function of Log-MAP decoding algorithm is implemented with very small hardware overhead. The proposed Turbo decoder is synthesized in $0.35\mu$m Hynix CMOS technology. The synthesized result for the Turbo decoder shows that it supports a maximum 9Mbps data rate, and a BER of $10^{-6}$ is achieved(Eb/No=1.0dB, 5 iterations, and the interleaver size $\geq$ 2000).

General Log-Likelihood Ratio Expression and Its Implementation Algorithm for Gray-Coded QAM Signals

  • Kim, Ki-Seol;Hyun, Kwang-Min;Yu, Chang-Wahn;Park, Youn-Ok;Yoon, Dong-Weon;Park, Sang-Kyu
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.291-300
    • /
    • 2006
  • A simple and general bit log-likelihood ratio (LLR) expression is provided for Gray-coded rectangular quadrature amplitude modulation (R-QAM) signals. The characteristics of Gray code mapping such as symmetries and repeated formats of the bit assignment in a symbol among bit groups are applied effectively for the simplification of the LLR expression. In order to reduce the complexity of the max-log-MAP algorithm for LLR calculation, we replace the mathematical max or min function of the conventional LLR expression with simple arithmetic functions. In addition, we propose an implementation algorithm of this expression. Because the proposed expression is very simple and constructive with some parameters reflecting the characteristic of the Gray code mapping result, it can easily be implemented, providing an efficient symbol de-mapping structure for various wireless applications.

  • PDF

Design of a Low-Power Turbo Decoder Using Parallel SISO Decoders (병렬 SISO 복호기에 의한 저전력 터보 복호기의 설계)

  • Lee, Hee-Jin;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2C
    • /
    • pp.25-30
    • /
    • 2005
  • Turbo code is popularly used for the reliable communication in the presence of burst errors. Even if it shows good error performance near to the Shannon limits, it requires a large amount of memories and exhibits long latency. This paper proposes an architecture for the low power implementation of the Turbo decoder adopting the Max-Log-Map algorithm. In the proposed design, two SISO decoders are designed to operate in parallel, and a novel interleaver is designed to prevent the collision of memory accesses by two SISO decoders. Experimental results show that power consumption has been reduced by about 40% in the proposed decoder compared to previous Turbo decoders. The area overhead due to the additional interleaver controller is negligible.

Using a Greedy Algorithm for the Improvement of a MapReduce, Theta join, M-Bucket-I Heuristic (그리디 알고리즘을 이용한 맵리듀스 세타조인 M-Bucket-I 휴리스틱의 개선)

  • Kim, Wooyeol;Shim, Kyuseok
    • Journal of KIISE
    • /
    • v.43 no.2
    • /
    • pp.229-236
    • /
    • 2016
  • Theta join is one of the essential and important types of queries in database systems. As the amount of data needs to be processed increases, processing theta joins with a single machine becomes impractical. Therefore, theta join algorithms using distributed computing frameworks have been studied widely. Although one of the state-of-the-art theta-join algorithms uses M-Bucket-I heuristic, it is hard to use since running time of M-Bucket-I heuristic, which computes a mapping from a record to a reducer (i.e., reducer mapping), is O(n) where n is the size of input data. In this paper, we propose MBI-I algorithm which reduces the running time of M-Bucket-I heuristic to $O(r_{max}log\;n)$ and gives the same result as M-Bucket-I heuristic does. We also conducted several experiments to show algorithm and confirmed that our algorithm can improve the performance of a theta join by 10%.