• Title/Summary/Keyword: Max Tensile Stress

Search Result 32, Processing Time 0.024 seconds

Evaluation of Adhesive Properties Using Cohesive Zone Model : Mode I (Cohesive Zone Model을 이용한 접착제 물성평가 : 모드 I)

  • Lee, Chan-Joo;Lee, Sang-Kon;Ko, Dae-Cheol;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.474-481
    • /
    • 2009
  • Fracture models and criteria of adhesive with two parameters, namely $G_C$ and ${\sigma}_{max}$, have been developed to describe the fracture process of adhesive joints. Cohesive zone model(CZM) is a representative two parameter failure criteria approach. In CZM, ${\sigma}_{max}$ is a critical, limiting maximum value of the stress in the damage zone ahead of the crack and is assumed to have some physical significance in adhesive failure. Based on CZM and finite element analysis method, the relationship between fracture load and adhesive properties, as $G_{IC)$ and $({\sigma}_{max})_I$, was investigated in adhesively bonded joint tensile test and T-peel test. The two parameters in tensile mode loading were evaluated by using the relationship. The value of $G_{\IC}$ evaluated by proposed method showed close agreement with analytical solution for tapered double cantilever beam(TDCB) test which proposed in an ASTM standard.

Fatigue Crack Propagation Characteristics in HAZ of A106 Gr B Steel Pipe Weldments (A106 Gr B강 배관용접부의 잔류응력해석 및 피로균열성장특성)

  • 김철한;배동호;김복기;조선영;홍정균;이범노
    • Proceedings of the KWS Conference
    • /
    • 1999.05a
    • /
    • pp.237-240
    • /
    • 1999
  • In this study, residual stresses of the weldment were calculated by finite element analysis(FEA) and experiment. And, the crack closure behaviour and fatigue crack growth characteristics in field of residual stress of A106 Gr B steel pipe weldment were investigated under various stress ratio. Obtained results are as follows. I) $K_{op}$ was independent of $K_{max}$, and load ratio in fatigue crack growth. 2) In variation of load ratio, the scatter band of crack growth curve was reduced by half considering crack closure. and 3) Neglecting crack closure behaviour, actual fatigue crack growth rate can be underestimated' and Actual fatigue crack growth rate can be overestimated by $K_{res}$, in tensile residual stress field.

  • PDF

Study on the Tensile Strength of Virgin Hair by High-Density Oxidative Dye Application (버진 헤어(Virgin hair)의 고명도(高明渡) 산화염모제 시술에 따른 모발 인장강도 연구)

  • Lim, Sun-Nye;Park, Jang-Soon
    • Journal of Digital Convergence
    • /
    • v.17 no.8
    • /
    • pp.447-452
    • /
    • 2019
  • Modern people are investing a lot of time and economically in their appearance as a means of expressing their aesthetic desires. They have a lot of hair dyes that make up most of their appearance, but their hair damage is serious. Especially, they use hair dyes which are very popular among the hair cosmetics that make up most of their appearance, but their hair damage is serious. The purpose of this study is to investigate the hair tensile strength of hair with oxidative hair dye to induce styling while minimizing hair damage. The results showed that the Max. load, Max. stress, Max. elongation, break load, break stress, break elongation, maximum modulus and tangential modulus according to evaluation interval were significantly different between control and 8N-10N experimental groups. The maximum modulus and tangential modulus for the strain interval did not show tendency to increase or decrease constantly, although there was a difference between the control and experimental group. Therefore this study was conducted to investigate the correlation between hair loss and hair damage through the treatment of high grade oxidative hair dye, which is widely used in ield of industry. We want to provide application data.

A convergence study on the properties of hair coated with Ginkgo biloba extract (은행잎 추출물 도포 모발의 물성(物性)에 관한 융합적 연구)

  • Park, Jang-Soon
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.8
    • /
    • pp.223-228
    • /
    • 2020
  • The need to steadily manage healthy hair for a beautiful hairstyle is emerging, and it is time to develop hair cosmetics using natural antioxidants that are harmless to the human body according to the needs of the times. Therefore Max. Load, Max. Stress, Max. Elongation, and breakage on the hair coated with the extract of Ginkgo biloba L. According to the Break Load, Break Stress, Break Elongation, Max. Various convergence property experiments such as modulus and Tangential modulus values were conducted. As a result of research, the hairs coated with Ginkgo biloba extract had an overall increase in intrinsic properties including tensile strength compared to the control group. Through this study, we intend to study the potential of Ginkgo biloba L. as a useful material for hair cosmetics such as permanent wave preparations as well as health supplements and medicines that have been released, and we expect that it will be provided as useful research data for the subsequent development of various hair cosmetics.

A Study on the Evaluation Technique of Damage of Metal Matrix Composite Using X-Ray Fractography Method (X선 프렉토그래피기법을 이용한 금속복합재료의 피로손상 해석에 관한 연구)

  • Park, Young-Chul;Yun, Doo-Pyo;Park, Dong-Sung;Kim, Deug-Jin;Kim, Kwang-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.3
    • /
    • pp.172-180
    • /
    • 1998
  • It is attempted to verify the Quantitative relationship between fracture mechanical parameters (${\Delta}K$, $K_{max}$) and X-ray parameters (residual stress, half-value breadth) of A12009-15v/o $SiC_w$ composite, and normalized SS41 steel. In this study, fatigue crack propagation test were carried out and X-ray diffraction was applied to fatigue fractured surface in order to investigate the change of residual stress and half-value breadth on fatigue fractured surface. And it is loaded prestrain to each tensile specimen, A12009-15v/o $SiC_w$ composite(0.3, 0.5, 1, 1.5, 2%) and normalized SS41 steel(0.63, 2.25, 7.50, 13.7, 20%), for investigating plastic strain rate using nondestructive measurement method. X-ray diffraction was applied to the prestrained tensile specimens in order to measure the change of residual stress and half-value breadth.

  • PDF

Influence of Crown Margin Design on the Stress Distribution in Maxillary Canine Restored by All-Ceramic Crown: A Finite Element Analysis

  • Ozer, Zafer;Kurtoglu, Cem;Mamedov, Amirullah M.;Ozbay, Ekmel
    • Journal of Korean Dental Science
    • /
    • v.8 no.1
    • /
    • pp.28-35
    • /
    • 2015
  • Purpose: To investigate the influence of crown margin design on the stress distribution and to localize critical sites in maxillary canine under functional loading by using three dimensional finite element analysis. Materials and Methods: The bite force of 100 N, 150 N, and 200 N was applied with an angulation of $45^{\circ}$ to the longitudinal axis of tooth. Six models were restored with IPS e.max (Ivoclar Vivadent, Schaan, Liechtenstein) with a different margin design. With lingual ledge and various thicknesses, three different core ceramics were designed in each model. Result: In the core ceramic, the maximum tensile stresses were found at the labiocervical region. In the veneering ceramic the maximum tensile stresses were found at the area where the force was applied in all models. Conclusion: Shoulder and chamfer margin types are acceptable for all-ceramic rehabilitations. A ledge on the core ceramic at cervical region may affect the strength of all-ceramic crowns.

A Study on Fatigue Crack Growth of an EMU Wheel due to Repeated Rolling Contacts (전동차 차륜의 반복 구름 접촉에 의한 피로균열 전파에 관한 연구)

  • Kim Ho-Kyung;Lee Duk Gyu
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.595-600
    • /
    • 2004
  • The EMU wheel is one of the most important component for the vehicle safety. For the tensile, fracture toughness and crack propagation tests, several specimens were collected from actual wheels. FEM ,analysis also was performed on the crack that was assumed to be 15 mm in depth under the wheel tread surface. The stress intensity factors $K_{I}$ and $K_{II}$ at the crack tip under the stress ($P_{max}$ = 911.5 MPa) due to a rolling contact were analyzed for crack growth characteristics. As a result, the perpendicular crack was found to be more dangerous compared to the parallel one.

  • PDF

FEM Analysis on Rolling Contact Fatigue Crack of a Railway Wheel (철도 차륜의 구름접촉 피로 균열에 관한 유한요소해석)

  • Kim, Ho-Kyung;Yang, Kyoung-Tak;Kim, Hyun-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.2 s.80
    • /
    • pp.8-14
    • /
    • 2007
  • In this study, tensile and fatigue crack propagation tests machined from actual wheels were performed. FEM analysis also was performed on the crack that was assumed to be 15 mm in depth under the wheel tread surface. The stress intensity factors K I and K II at the crack tip under the stress($P_{max}=911.5MPa$) due to a rolling contact were analyzed for crack growth characteristics. As a result, the perpendicular crack was found to be more dangerous compared to the parallel one. It is found that in the wheel fatigue crack, parallel to the wheel tread surface, the crack with its length 2a = 2.4mm starts to propagate due to the fact that the effective stress intensity factor access to the threshold stress intensity factor($K_{th}=16.04MPa{\sqrt{m}}$) of the wheel.

Experimental Study for Enhancement of Material Strength In Cold Cross Wedge Rolling Process (냉간 전조압연 공정에서의 성형조건에 따른 재료의 물성변화분석)

  • Yoon D. J.;Kim I. H.;Choi S. O.;Lim S. J.;Lee H. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.319-324
    • /
    • 2004
  • Cross wedge rolling process is utilized to manufacture multi-stepped axis symmetrical parts. This process is generally performed under high temperature conditions in order to induce serious deformation. But cold cross wedge rolling process has been rarely studied due to the limits of deformation. Recently, the cold cross wedge rolling process has been utilized to enhance the material strength in specified parts of manufactured products. In this paper, experimental researches were carried out with various forming conditions of cold cross wedge rolling process in order to suggest the design guidance to make preform for cold cross wedge rolling. The tensile strength and the surface hardness of specified region were compared to that of initial material with the variation of the area reduction and the rotational speed of rolling die. With respect to the area reduction, the maximum tensile strength was linearly increased and the surface hardness was rapidly increased within lower percent of area reduction. The surface hardness was saturated over the rotational die speed of 0.8 RPM.

  • PDF

The Effect of Stress Ratio on Fatigue Crack Propagation Rate and Arrest Behavior in 7075-T735 Al Alloy (7075-T735 Al 합금의 피로균열 진전속도와 정류거동에 미치는 응력비의 영향)

  • 오세욱;강상훈;허정원;김태형
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.131-139
    • /
    • 1992
  • The understanding and appllication of fatigue crack propagation mechanism in variable amplitude loading is very important for life prediction of the air travel structures. Particularly, the retardation and arrest behavior of fatigue crack propagation by single tension overloading is essential to the understanding and appllication of fatigue crack propagation mechanism in variable amplitude loading. Numerous studies of the retardation behavior have been performed, however investigations of the arrest behavior have not been enough yet. As for the arrest behavior, Willenborg had reported that the overload shut-off ratio $[R_{so}=(K_{OL})/K_{max})_{crack arrest}]$ had been the material constant, but recently several investigators have reported that the overload shut-off ratio depends upon the stress ratio. In this study, authors have investigated the effect of stress ratio on the threshold overload shut-off ratio to generate arrest of fatigue crack growth in high tensile aluminum alloy 7075-T735 which have used in material for air travel structures, It has been $-0.4\leqqR\leqq0.4$ till now, the region of stress ratio investigated. The threshold overload shut-off ratio has decreased as stress ratio has increased in overall region of -$-0.4\leqqR\leqq0.4$ and the linearity has been seen in this material. Moreover, the experimental equation between $R_{so}$ and R has been made; The relation has been $R_{so}=-R+2.6$.

  • PDF