• 제목/요약/키워드: Matrix-free

검색결과 745건 처리시간 0.024초

병렬 처리 구조 터보 부호에서 라틴 방진 행렬로 구성된 충돌 방지 인터리버 (Collision-free Interleaver Composed of a Latin Square Matrix for Parallel-architecture Turbo Codes)

  • 김대선;오현영;송홍엽
    • 한국통신학회논문지
    • /
    • 제33권2C호
    • /
    • pp.161-166
    • /
    • 2008
  • 병렬 처리 구조 터보 부호에서 메모리 충돌을 피하기 위한 구성 인터리버 설계가 필요하다. 본 논문에서는 기존에 설계된 인터리버들과 라틴 방진 행렬로 구성된 충돌 방지 인터리버를 제안한다. 제안된 인터리버는 다양한 블록 길이와 다양한 병렬 처리 차수에 대하여 쉽게 최적화 할 수 있다. 제안된 인터리버의 성능을 컴퓨터 모의실험을 통해 검증하였다.

Vibration analysis of rotating beam with variable cross section using Riccati transfer matrix method

  • Feyzollahzadeh, Mahdi;Bamdad, Mahdi
    • Structural Engineering and Mechanics
    • /
    • 제70권2호
    • /
    • pp.199-207
    • /
    • 2019
  • In this paper, a semi-analytical method will be discussed for free vibration analysis of rotating beams with variable cross sectional area. For this purpose, the rotating beam is discretized through applying the transfer matrix method and assumed the axial force is constant for each element. Then, the transfer matrix is derived based on Euler-Bernoulli's beam differential equation and applying boundary conditions. In the following, the frequencies of the rotating beam with constant and variable cross sections are determined using the transfer matrix method in several case studies. In order to eliminate numerical difficulties in the transfer matrix method, the Riccati transfer matrix is employed for high rotation speed and high modes. The results are compared with the results of the finite elements method and Rayleigh-Ritz method which show good agreement in spite of low computational cost.

CAVITY FORMATION IN INTERFACE BETWEEN POWER LAW CREEP PARTICLE AND ELASTIC MATRIX SUBJECTED TO A UNIAXIAL STRESS

  • Lee, Yong-Sun;Ha, Young-Min;Hwang, Su-Chul
    • Journal of Theoretical and Applied Mechanics
    • /
    • 제1권1호
    • /
    • pp.69-88
    • /
    • 1995
  • The paper attempts to estimate the incubation time of a cavity in the interface between a power law creep particle and an elastic matrix subjected to a uniaxial stress. Since the power law creep particle is time dependent, the stresses in the interface relax. Through previous stress analysis related to the present physical model, the relaxation time is defined by ${\alpha}$2 which satisfies the equation $\Gamma$0 |1+${\alpha}$2k|m=1-${\alpha}$2 [19]. $\Gamma$0=2(1/√3)1+m($\sigma$$\infty$/2${\mu}$)m($\sigma$0/$\sigma$$\infty$tm) where $\sigma$$\infty$ is an applied stress, ${\mu}$ is a shear modulus of a matrix, $\sigma$$\infty$ is a material constant of a power law particle, $\sigma$=$\sigma$0 $\varepsilon$ and t elapsed time. the volume free energy associated with Helmholtz free energy includes strain energies associated with Helmholtz free energy includes strain energies caused by applied stress anddislocations piled up in interface (DPI). The energy due to DPI is found by modifying the results of Dundurs and Mura[20]. The volume free energies caused by both applied stress and DPI are a function of the cavity size(${\gamma}$) and elapsed time(t) and arise from stress relaxation in the interface. Critical radius ${\gamma}$ and incubation time t to maximize Helmholtz free energy is found in present analysis. Also, kinetics of cavity fourmation are investigated using the results obtained by Riede[16]. The incubation time is defied in the analysis as the time required to satisfy both the thermodynamic and kinetic conditions. Through the analysis it is found that [1] strain energy caused by the applied stress does not contribute significantly to the thermodynamic and kinetic conditions of a cavity formation, 2) in order to satisfy both thermodynamic and kinetic conditions, critical radius ${\gamma}$ decreases or holds constant with increase of time until the kinetic condition(eq.40) is satisfied. Therefore the cavity may not grow right after it is formed, as postulated by Harris[11], and Ishida and Mclean[12], 3) the effects of strain rate exponent (m), material constant $\sigma$0, volume fraction of the particle to matrix(f) and particle size on the incubation time are estimated using material constants of the copper as matrix.

비균열 외팔 보형 회전날개의 진동특성에 관한 연구

  • 정인성;채회창;박태원;이기형;이환성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 추계학술대회 논문집
    • /
    • pp.96-100
    • /
    • 2001
  • A method is presented for determining the free vibration characteristics of a rotating blade having nonuniform span wise properies and cantilevers boundary condition. The equations which govern the coupled the coupled flapwise, choirwise, and torsional motion of such a blade are solved using an integrating matrix method. By expressing the equation of motion in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary condition, the equations are formulated into an eigenvalues problem whose solution may be determined by conventional method. Computer results are compared with experimental data.

Recent advances in excimer-laser-based crystallization for active-matrix displays

  • Turk, Brandon A.;Herbst, Ludolf;Simon, Frank;Paetzel, Rainer
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.12-15
    • /
    • 2007
  • Excimer-laser-based crystallization is ideallysuited for forming crystalline Si films on glass substrates for use in active-matrix displays. In this paper, we will report on recent and significant technical advances in light sources and beam delivery systems targeted at enabling ultra-uniform mura-free low-temperature polycrystalline silicon active-matrix backplanes while simultaneously lowering production costs and increasing throughput.

  • PDF

일반역행열(一般逆行列)을 이용(利用)한 케이블네트 구조물(構造物)의 형상결정에 관한 연구 (A Study on the Shape Finding of Cable-Net Structures Introducing General Inverse Matrix)

  • 서삼열;이장복
    • 한국공간구조학회논문집
    • /
    • 제2권1호
    • /
    • pp.75-84
    • /
    • 2002
  • In this study, the 'force density method' for shape finding of cable net structures is presented. This concept is based on the force-length ratios or force densities which are defined for each branch of the net structures. This method renders a simple linear 'analytical form finding' possible. If the free choice of the force densities is restricted by further condition, the linear method is extended to a nonlinear one. The nonlinear one can be applied to the detailed computation of networks. In this paper, the general inverse matrix is introduced to solve the nonlinear equilibrium equation including Jacobian matrix which is rectangular matrix. Several examples for linear and nonlinear analysis applied additional constraints are presented. It is shown that the force density method is suitable for form finding of cable net and the general inverse matrix can be applied to solve the nonlinear equation without Lagrangian factors.

  • PDF

Effects of the Ultrafine and Nano-sized Clay on Rheological Behavior of the Matrix of ρ-alumina Bonded Castable

  • Cheon, Sungho;Jun, Byungsei
    • 한국세라믹학회지
    • /
    • 제40권7호
    • /
    • pp.632-636
    • /
    • 2003
  • To prepare the alumina cement free vibrated alumina castable, $\rho$-alumina is employed as a binder material, and nano-sized clay is added to enhance the curing strength and give thixotropic behavior. The rheological behavior of matrix of castable is controlled by investigating the influences of ultrafines, $\rho$-alumina, and nano-sized clay on the viscosity of matrix. The microsilica and ultrafine alumina were added 3 wt% and 4 wt%, respectively to the matrix, which showed that the viscosities tends to be lowest values. The rheological property of the matrix is well established by adding $\rho$-alumina as 8 wt% and clay as 4 wt%. The thixotropic behavior of the $\rho$-alumina bonded castable was appeared by introducing nano-sized clay into the matrix and adjusting the pH near to the PZC of the clay suspension.

곡선보 요소의 고유치 해석에서 질량행렬의 영향 (The Effect of the Mass Matrix in the Eigenvalue Analysis of Curved Beam Elements)

  • 유하상
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.288-296
    • /
    • 1997
  • Curved beam elements with two nodes based on shallow beam geometry and strain interpolations are employed in eigenvalue analysis. In these elements, the displacement interpolation functions and mass matrices are consistent with strain fields. To assess the quality of the element mass matrix in free vibration problems, several numerical experiments are performed. In these analysis, both the inconsistent mass matrices using linear displacement interpolation function and the consistent mass matrices are used to show the difference. The numerical results demonstrate that the accuracy is closely related to the property of the mass matrix as well as that of the stiffness matrix and that the mass matrix consistent with strain fields is very beneficial to eigenvalue analysis. Also, it is proved that the strain based elements are very efficient in a wide range of element aspect ratios and curvature properties.

모형 수도관에서 염소와 모노클로라민에 의한 생물막 제거 특성 비교 (Comparison of Biofilm Removal Characteristics by Chlorine and Monochloramine in Simulated Drinking Water Distribution Pipe)

  • 박세근;최성찬;김영관
    • 대한환경공학회지
    • /
    • 제28권1호
    • /
    • pp.26-33
    • /
    • 2006
  • 본 연구에서는 염소와 모노클로라민을 이용하여 생물막이 제거되는 특성을 알아보았다. 염소와 모노클로라민을 0.5, 1.0, 2.0 mg/L의 농도로 잔류시킨 수돗물을 생물막이 형성되어 있는 모형 수도관에 연속적으로 공급하고, 관 표면으로부터 부착성 HPC와 biomass를 측정하였다. 염소는 생물막을 구성하는 미생물의 비활성화와 표면으로부터 생물막 matrix를 제거하는데 높은 효과를 나타낸 반면에 모노클로라민은 생물막 matrix를 제거하는데 염소보다 상대적으로 낮은 효율을 나타냈다. 특히 모노클로라민을 이용한 소독 처리에서는 세균과 EPS가 결합된 생물막 matrix가 관 표면으로부터 대부분 제거되지 않은 상태로 존재하였다. 비록 2.0 mg/L의 잔류염소가 생물막 제거에 높은 효과를 보였지만, 관 표면에는 여전히 낮은 수준(<10 $CFU/cm^2$ as 부착성 HPC, <5 ${\mu}g/cm^2$ as biomass)의 생물막이 잔류하고 있었다. 생물막의 제거 특성을 평가하는데 있어서 biomass의 측정이 효과적인 수단인 것으로 판단되었다.

Free vibration and static analysis of functionally graded skew magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Smart Structures and Systems
    • /
    • 제21권4호
    • /
    • pp.493-519
    • /
    • 2018
  • This article presents a finite element (FE) model to assess the free vibration and static response of a functionally graded skew magneto-electro-elastic (FGSMEE) plate. Through the thickness material grading of FGSMEE plate is achieved using power law distribution. The coupled constitutive equations along with the total potential energy approach are used to develop the FE model of FGSMEE plate. The transformation matrix is utilized in bringing out the element matrix corresponding to the global axis to a local axis along the skew edges to specify proper boundary conditions. The effect of skew angle on the natural frequency of an FGSMEE plate is analysed. Further, the study includes the evaluation of the static behavior of FGSMEE plate for various skew angles. The influence of skew angle on the primary quantities such as displacements, electric potential, and magnetic potential, and secondary quantities such as stresses, electric displacement and magnetic induction is studied in detail. In addition, the effect of power-law gradient, thickness ratio, boundary conditions and aspect ratio on the free vibration and static response characteristics of FGSMEE plate has been investigated.