• Title/Summary/Keyword: Matrix structures

Search Result 1,294, Processing Time 0.028 seconds

Effect of Matrix Structures on the Fracture Characteristics of Austempered C/V Graphite Iron (오스템퍼링처리한 C/V흑연주철의 파괴특성에 미치는 기지조직의 영향에 관한 연구)

  • Kim, Chang-Gyu;Kim, Hong-Beum;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.16 no.2
    • /
    • pp.109-115
    • /
    • 1996
  • Effect of various austempered structures on fracture characteristics of C/V graphite cast iron has studied. The tensile strength and hardness reached the maximum value of 971.4MPa and HB302 at the austempering temperature of $250^{\circ}C$, respectively. As the austempering temperature increased, the amount of retained austenite increased from 18% to 22, 29%, while $K_{IC}$ values ranged from the value of $65MPa{\cdot}m^{12} to 70MPa{\cdot}m^{1/2}, 66MPa{\cdot}m^{1/2}. This fact that $K_{IC}$ value was not sensitive to the increase of the amount of the retained austenite was that $K_{IC}$ was dependent on the matrix structure in lower bainitic matrix, while dependent on the notch effect from C/V graphite shape in upper bainitic matrix. Fractured surfaces showed a ductile fracture pattern at $300^{\circ}C$. Very large coalescence by C/V graphite and relatively small voids by spheroidal graphite were observed.

  • PDF

Dual graph-regularized Constrained Nonnegative Matrix Factorization for Image Clustering

  • Sun, Jing;Cai, Xibiao;Sun, Fuming;Hong, Richang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2607-2627
    • /
    • 2017
  • Nonnegative matrix factorization (NMF) has received considerable attention due to its effectiveness of reducing high dimensional data and importance of producing a parts-based image representation. Most of existing NMF variants attempt to address the assertion that the observed data distribute on a nonlinear low-dimensional manifold. However, recent research results showed that not only the observed data but also the features lie on the low-dimensional manifolds. In addition, a few hard priori label information is available and thus helps to uncover the intrinsic geometrical and discriminative structures of the data space. Motivated by the two aspects above mentioned, we propose a novel algorithm to enhance the effectiveness of image representation, called Dual graph-regularized Constrained Nonnegative Matrix Factorization (DCNMF). The underlying philosophy of the proposed method is that it not only considers the geometric structures of the data manifold and the feature manifold simultaneously, but also mines valuable information from a few known labeled examples. These schemes will improve the performance of image representation and thus enhance the effectiveness of image classification. Extensive experiments on common benchmarks demonstrated that DCNMF has its superiority in image classification compared with state-of-the-art methods.

Object-Oriented Free Vibration Analysis of Plane Flamed Structures (평면 뼈대 구조물의 객체지향 자유진동해석)

  • 신영식;최희옥;서진극
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.61-68
    • /
    • 1993
  • A computer program for free vibration analysis of plane framed structures has been developed by object oriented programming technique using C" language. The object oriented programming concepts such as object, class, method and inheritance are represented. The static and free vibration analyses for framed structures were satisfactorily performed by this program which consists of TOP, VECTOR, MATRIX, STRU, GUI and other classes. Numerical test shows the validity and capability of the present study which can be expandable to develop a general purpose object oriented finite element analysis program of structures ,res ,

  • PDF

Transfer matrix method for solution of FGMs thick-walled cylinder with arbitrary inhomogeneous elastic response

  • Chen, Y.Z.
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.469-477
    • /
    • 2018
  • This paper presents a numerical solution for the thick cylinders made of functionally graded materials (FGMs) with a constant Poisson's ratio and an arbitrary Young's modulus. We define two fundamental solutions which are derived from an ordinary differential equation under two particular initial boundary conditions. In addition, for the single layer case, we can define the transfer matrix N. The matrix gives a relation between the values of stress and displacement at the interior and exterior points. By using the assumed boundary condition and the transfer matrix, we can obtain the final solution. The transfer matrix method also provides an effective way for the solution of multiply layered cylinder. Finally, a lot of numerical examples are present.

Equivalent Coefficient Element Modelling for a Jointed Structure Using the Reduction of Flexibility and Mass Matrices (유연도행렬 및 질량관성행렬의 축약을 이용한 결합체결 구조부의 등가 계수행렬 요소 모델링)

  • Choi, Y.H.;Shin, J.H.;Chung, W.J.;Park, J.K.;Cho, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.655-660
    • /
    • 2000
  • This paper presents the construction of consistent coefficient matrix elements for jointed structures using the reduction of flexibility and mass matrices. The reduced flexibility coefficient matrix hat little structural complexity than Guyan's stiffness matrix reduction since the only element of the original matrix, corresponding to the selected nodal degrees of freedom, contributes. The proposed method was applied to building equivalent coefficient matrices for a clamp jointed structure in finite element modal analysis of a cantilevered beam. The theoretical analysis results were compared with those experimental modal analysis, Comparison of both shows good agreement each other.

  • PDF

The Convergence of Accuracy Ratio in Finite Element Method (유한요소법의 정도수렴)

  • Cho, Soon-Bo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.2 s.8
    • /
    • pp.85-90
    • /
    • 2003
  • If we use a third order approximation for the displacement function of beam element in finite element methods, finite element solutions of beams yield nodal displacement values matching to beam theory results to have no connection with the number increasing of elements of beams. It is assumed that, as the member displacement value at beam nodes are correct, the calculation procedure of beam element stiffness matrix have no numerical errors. A the member forces are calculated by the equations of $\frac{-M}{EI}=\frac{{d^2}{\omega}}{dx^2}\;and\;\frac{dM}{dx}=V$, the member forces at nodes of beams have errors in a moment and a shear magnitudes in the case of smaller number of element. The nodal displacement value of plate subject to the lateral load converge to the exact values according to the increase of the number of the element. So it is assumed that the procedures of plate element stiffness matrix calculations has a error in the fundamental assumptions. The beam methods for the high accuracy ratio solution Is also applied to the plate analysis. The method of reducing a error ratio of member forces and element stiffness matrix in the finite element methods is studied. Results of study were as follows. 1. The matrixes of EI[B] and [K] in the equations of M(x)=EI[B]{q} and M(x) = [K]{q}+{Q} of beams are same. 2. The equations of $\frac{-M}{EI}=\frac{{d^2}{\omega}}{dx^2}\;and\;\frac{dM}{dx}=V$ for the member forces have a error ratio in a finite element method of uniformly loaded structures, so equilibrium node loads {Q} must be substituted in the equation of member forces as the numerical examples of this paper revealed.

  • PDF

A simplified geometric stiffness in stability analysis of thin-walled structures by the finite element method

  • Senjanovic, Ivo;Vladimir, Nikola;Cho, Dae-Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.313-321
    • /
    • 2012
  • Vibration analysis of a thin-walled structure can be performed with a consistent mass matrix determined by the shape functions of all degrees of freedom (d.o.f.) used for construction of conventional stiffness matrix, or with a lumped mass matrix. In similar way stability of a structure can be analysed with consistent geometric stiffness matrix or geometric stiffness matrix with lumped buckling load, related only to the rotational d.o.f. Recently, the simplified mass matrix is constructed employing shape functions of in-plane displacements for plate deflection. In this paper the same approach is used for construction of simplified geometric stiffness matrix. Beam element, and triangular and rectangular plate element are considered. Application of the new geometric stiffness is illustrated in the case of simply supported beam and square plate. The same problems are solved with consistent and lumped geometric stiffness matrix, and the obtained results are compared with the analytical solution. Also, a combination of simplified and lumped geometric stiffness matrix is analysed in order to increase accuracy of stability analysis.

A method for earthquake response analysis of tall flexible structure

  • Liu, Tielin;Jiang, Yingchun;Luan, Yu
    • Earthquakes and Structures
    • /
    • v.4 no.2
    • /
    • pp.133-155
    • /
    • 2013
  • The earthquake responses are studied for the tall flexible structures such as TV towers when the vertical eccentricities between the discrete nodes and the corresponding centroids of investigated lumps are considered. In practical analyses, the tall flexible structures can be made into a spatial-discrete system of some certain length of beam elements with different lengths and cross-sectional areas. These elements are used to construct the investigated lumps in this paper. The different cross-sectional areas and the different lengths of two adjacent elements lead to the appearance of vertical eccentricity between the discrete node and the centroid of investigated lump within the same investigated lump. Firstly, the governing equations are established for a typical investigated lump. Secondly, the calculating formulae of the forces and moments acting on the investigated lump are derived and provided. Finally the new dynamic equilibrium equations with modified mass matrix and assemblage of stiffness matrix have been derived for the stick MDOF model based on beam theory when the existing vertical eccentricities are considered. Numerical results demonstrate that these vertical eccentricities should be considered in order to obtain the accurate earthquake responses for the tall flexible structures.

Iterated Improved Reduced System (IIRS) Method Combined with Sub-Structuring Scheme (I) - Undamped Structural Systems - (부구조화 기법을 연동한 반복적인 동적 축소법 (I) - 비감쇠 구조 시스템 -)

  • Choi, Dong-Soo;Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.211-220
    • /
    • 2007
  • This work presents an iterated improved reduced system (IIRS) procedure combined with sub-structuring scheme for large structures. Iterated IRS methods are usually more efficient than others because the dynamic condensation matrix is updated repeatedly until the desired convergent values are obtained. However, using these methods simply for large structures causes expensive computational cost and even makes analyses intractable because of the limited computer storage. Therefore, the application of sub-structuring scheme is necessary. Because the large structures are subdivided into several (or more) sub-domains, the construction of dynamic condensation matrix does not require much computation cost in every iteration. This makes the present method much more efficient to compute the eigenpairs both in lower and intermediate modes. In Part I, iterated IRS method combined with sub-structuring scheme for undamped structures is presented. The validation of the proposed method and the evaluation of computational efficiency are demonstrated through the numerical examples.