• Title/Summary/Keyword: Matrix model

Search Result 3,379, Processing Time 0.035 seconds

The finite element model research of the pre-twisted thin-walled beam

  • Chen, Chang Hong;Zhu, Yan Fei;Yao, Yao;Huang, Ying
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.389-402
    • /
    • 2016
  • Based on the traditional mechanical model of thin-walled straight beam, the paper makes analysis and research on the pre-twisted thin-walled beam finite element numerical model. Firstly, based on the geometric deformation differential relationship, the Saint-Venant warping strain of pre-twisted thin-walled beam is deduced. According to the traditional thin-walled straight beam finite element mechanical model, the finite element stiffness matrix considering the Saint-Venant warping deformations is established. At the same time, the paper establishes the element stiffness matrix of the pre-twisted thin-walled beam based on the classic Vlasov Theory. Finally, by calculating the pre-twisted beam with elliptical section and I cross section and contrasting three-dimensional solid finite element using ANSYS, the comparison analysis results show that pre-twisted thin-walled beam element stiffness matrix has good accuracy.

A controller design using modal decomposition of matrix pencil

  • Shibasato, Koki;Shiotsuki, Tetsuo;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.492-492
    • /
    • 2000
  • This paper proposes LQ optimal controller design method based on the modal decomposition. Here, the design problem of linear time-invariant systems is considered by using pencil model. The mathematical model based on matrix pencil is one of the most general representation of the system. By adding some conditions the model can be reduced to traditional system models. In pencil model, the state feedback is considered as an algebraic constraint between the state variable and the control input variable. The algebraic constraint on pencil model is called purely static mode, and is included in infinite mode. Therefore, the information of the constant gain controller is included in the purely static mode of the augmented system which consists of the plant and the control conditions. We pay attention to the coordinate transformation matrix, and LQ optimal controller is derived from the algebraic constraint of the internal variable. The proposed method is applied to the numerical examples, and the results are verified.

  • PDF

Estimable functions of less than full rank linear model (불완전계수의 선형모형에서 추정가능함수)

  • Choi, Jaesung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.2
    • /
    • pp.333-339
    • /
    • 2013
  • This paper discusses a method for getting a basis set of estimable functions of less than full rank linear model. Since model parameters are not estimable estimable functions should be identified for making inferences proper about them. So, it suggests a method of using full rank factorization of model matrix to find estimable functions in easy way. Although they might be obtained in many different ways of using model matrix, the suggested full rank factorization technique could be one of much easier methods. It also discusses how to use projection matrix to identify estimable functions.

An Assessment on the Preliminary Coupled Load Analysis Results for Advanced Low Earth Orbit Earth Observation Satellite (고성능 저궤도 지구관측위성의 예비연성하중 해석결과에 대한 평가)

  • Kim, Kyung-Won;Lim, Jae-Hyuk;Kim, Sun-Won;Kim, Chang-Ho;Kim, Sung-Hoon;Hwang, Do-Soon
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.94-100
    • /
    • 2011
  • In this paper, an assessment on the preliminary coupled load analysis results for advanced Low Earth Orbit Earth Observation satellite was performed. Spacecraft FE-model was converted into Craig-Bampton model consisting of mass matrix, stiffness matrix, acceleration transformation matrix, displacement transformation matrix, and it was delivered to the launch vehicle developer. Launch vehicle developer performed a coupled load analysis with launch vehicle model and spacecraft Craig-Bampton model, and the coupled load analysis results were provided to us. From the assessment on the analysis results, it was verified that spacecraft is safe under launch environment.

A Model for Diffusion and Dissolution Controlled Drug Release from Dispersed Polymeric Matrix (고분자 분산 매트릭스로부터의 약물방출에 관한 확산 및 용출 제어 모델)

  • Byun, Young-Rho;Choi, Young-Kweon;Jeong, Seo-Young;Kim, Young-Ha
    • Journal of Pharmaceutical Investigation
    • /
    • v.20 no.2
    • /
    • pp.79-88
    • /
    • 1990
  • A numerical model for diffusion and dissolution controlled transport from dispersed matrix is presented. The rate controlling process for transport is considered to be diffusion of drug through a concentration gradient coupled with time-dependent surface change and/or disappearance of the dispersed drug in response to the dissolution. The transport behavior of drug was explained in terms of ${\nu}$ parameter: ${\nu}$ value means a ratio of diffusion time constant and dissolution time constant. This general model has wide range of application from where release is controlled by the diffusion rate to where release is governed by the dissolution rate. Based on this model, theoretical drug concentration, particle size distributions in the polymer matrix system and the resulting release rate were also investigated.

  • PDF

A Study on the Risk Assessment for Urban Railway Systems Using an Adaptive Neuro-Fuzzy Inference System(ANFIS) (적응형 뉴로-퍼지(ANFIS)를 이용한 도시철도 시스템 위험도 평가 연구)

  • Tak, Kil Hun;Koo, Jeong Seo
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.1
    • /
    • pp.78-87
    • /
    • 2022
  • In the risk assessment of urban railway systems, a hazard log is created by identifying hazards from accident and failure data. Then, based on a risk matrix, evaluators analyze the frequency and severity of the occurrence of the hazards, conduct the risk assessment, and then establish safety measures for the risk factors prior to risk control. However, because subjective judgments based on the evaluators' experiences affect the risk assessment results, a more objective and automated risk assessment system must be established. In this study, we propose a risk assessment model in which an adaptive neuro-fuzzy inference system (ANFIS), which is combined in artificial neural networks (ANN) and fuzzy inference system (FIS), is applied to the risk assessment of urban railway systems. The newly proposed model is more objective and automated, alleviating the limitations of risk assessments that use a risk matrix. In addition, the reliability of the model was verified by comparing the risk assessment results and risk control priorities between the newly proposed ANFIS-based risk assessment model and the risk assessment using a risk matrix. Results of the comparison indicate that a high level of accuracy was demonstrated in the risk assessment results of the proposed model, and uncertainty and subjectivity were mitigated in the risk control priority.

Two-dimensional concrete meso-modeling research based on pixel matrix and skeleton theory

  • Jingwei Ying;Yujun Jian;Jianzhuang Xiao
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.671-688
    • /
    • 2024
  • The modeling efficiency of concrete meso-models close to real concrete is one of the important issues that limit the accuracy of mechanical simulation. In order to improve the modeling efficiency and the closeness of the numerical aggregate shape to the real aggregate, this paper proposes a method for generating a two-dimensional concrete meso-model based on pixel matrix and skeleton theory. First, initial concrete model (a container for placing aggregate) is generated using pixel matrix. Then, the skeleton curve of the residual space that is the model after excluding the existing aggregate is obtained using a thinning algorithm. Finally, the final model is obtained by placing the aggregate according to the curve branching points. Compared with the traditional Monte Carlo placement method, the proposed method greatly reduces the number of overlaps between aggregates by up to 95%, and the placement efficiency does not significantly decrease with increasing aggregate content. The model developed is close to the actual concrete experiments in terms of aggregate gradation, aspect ratio, asymmetry, concavity and convexity, and old-new mortar ratio, cracking form, and stress-strain curve. In addition, the cracking loss process of concrete under uniaxial compression was explained at the mesoscale.

Application to the design of reduced-order robust MPC and MIMO identification

  • Lee, Kwang-Soon;Kim, Sang-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.313-316
    • /
    • 1997
  • Two different issues, design of reduced-order robust model predictive control and input signal design for identification of a MIMO system, are addressed and design techniques based on singular value decomposition(SVD) of the pulse response circulant matrix(PRCM) are proposed. For this, we investigate the properties of the PRCM, which is a periodic approximation of a linear discrete-time system, and show its SVD represents the directional as well as the frequency decomposition of the system. Usefulness of the PRCM and effectiveness of the proposed design techniques are demonstrated through numerical examples.

  • PDF

MODULUS-BASED SUCCESSIVE OVERRELAXATION METHOD FOR PRICING AMERICAN OPTIONS

  • Zheng, Ning;Yin, Jun-Feng
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.769-784
    • /
    • 2013
  • We consider the modulus-based successive overrelaxation method for the linear complementarity problems from the discretization of Black-Scholes American options model. The $H_+$-matrix property of the system matrix discretized from American option pricing which guarantees the convergence of the proposed method for the linear complementarity problem is analyzed. Numerical experiments confirm the theoretical analysis, and further show that the modulus-based successive overrelaxation method is superior to the classical projected successive overrelaxation method with optimal parameter.

Design of Experiment Using Design Matrix in Terms of Generalized Linear Model (일반화 선형모형의 디자인 행렬을 이용한 품질 실험 설계)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2009.04a
    • /
    • pp.423-427
    • /
    • 2009
  • This study proposes the generation mechanism of various design matrix using generalized linear model for design of experiment. Design generation method of GLM analysis, factorial design(FD) with center points, ANOVA design with lack-of-fit test, and response surface design are introduced. In central composite(CC) design, orthogonal blocking and fractional factorial design(FFD) are presented. We compare the design of Box-Benhken(BB) and face-centred central compsite design.

  • PDF