• Title/Summary/Keyword: Matrix degradation

Search Result 490, Processing Time 0.033 seconds

Factors Affecting Longitudinal Tensile Strength of SiC/Ti-Al-V Composites Manufactured by Plasma Spraying

  • Baik, Kyeong-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.514-515
    • /
    • 2006
  • In this study, multi-ply SiC fiber reinforced Ti-6Al-4V composites have been manufactured by plasma spraying and subsequent vacuum hot pressing. Two different sizes of Ti-6Al-4V feedstock powders were used for plasma spraying to form matrix. A considerable amount of oxygen was incorporated into as-sprayed Ti matrix during plasma spraying, and consequently caused matrix embrittlement. The use of coarse-sized feedstock powder reduced oxygen contamination, but tended to increase fiber spacing irregularity and fiber strength degradation. Longitudinal tensile strength and ductility of the composites were mainly affected by the matrix oxygen content.

  • PDF

Adenovirus-Mediated Gene Delivery of Tissue Inhibitor of Metalloproteinase-1 Inhibits Migration of B16F10 Melanoma Cell in Wound Migration Assay

  • Seungwan Jee;Hoil Kang;Park, Sehgeun;Park, Misun;Miok Eom;Taikyung Ryeom;Kim, Okhee
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.177-177
    • /
    • 2003
  • Tumor cell invasion and metastasis are a complex multistep process that involves the degradation of extracellular matrix proteins by matrix metalloproteinases (MMPs). Tissue inhibitor of metalloproteinase-1 (TIMP-1) acts as a negative regulator of matrix metalloproteinase and thus prevents tumor cell invasion and metastasis by preserving extracellular matrix integrity.(omitted)

  • PDF

Inhibitory effect of 2-amino-3-ethoxycarbonyl-1-methyl pyrolo (3,2-b) naphtho-4,9-dione on tumor cell invasion in human fibrosarcoma cells by downregulating matrix metalloproteinase-2 and 9

  • Park, Hyen-Joo;Hwang, Hye-Jin;Lee, Hyun-Jung;Suh, Myung-Eun;Lee, Sang-Kook
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.243.1-243.1
    • /
    • 2002
  • Matrix metalloproteinases (MMPs) play an important role in tumor invasion and metastasis by matrix degradation. To analyze the effect of 2-amino-3-ethoxycarbonyl-1-methyl pyrolo (3,2-b) naphtho-4,9-dione (compound 1) on the invasion or metastasis of cancer cells the expression of matrix metalloproteases (MMPs) was investigated in human fibrosarcoma HT 1080 cells by AT -PCR or gelatin zymographic methods. (omitted)

  • PDF

Microfailure Degradation Mechanisms and Interfacial Properties of Bioabsorbable Composites for Implant Materials using Micromechanical Technique and Acoustic Emission (Micromechanical 시험법과 음향방출을 이용한 Implant용 Bioabsorbable 복합재료의 미세파괴 분해메커니즘과 계면물성)

  • 박종만;김대식
    • Composites Research
    • /
    • v.14 no.4
    • /
    • pp.15-26
    • /
    • 2001
  • Interfacial properties and microfailure degradation mechanisms of the bioabsorbable composites fur implant materials were investigated using micromechanical technique and nondestructive acoustic emission (AE). As hydrolysis time increased, the tensile strength, the modulus and the elongation of poly(ester-amide) (PEA) and bioactive glass fibers decreased, whereas these of chitosan fiber almost did not change. Interfacial shear strength (IFSS) between bioactive glass fiber and poly-L-lactide (PLLA) was much higher than PEA or chitosan fiber/PLLA systems using dual matrix composite (DMC) specimen. The decreasing rate of IFSS was the fastest in bioactive glass fiber/PLLA composites whereas that of chitosan fiber/PLLA composites was the slowest. AE amplitude and AE energy of PEA fiber decreased gradually, and their distributions became narrower than those in the initial state with hydrolysis time. In case of bioactive glass fiber, AE amplitude and AE energy in tensile failure were much higher than in compression. In addition, AE parameters at the initial state were much higher than those after degradation under both tensile and compressive tests. In this work, interfacial properties and microfailure degradation mechanisms can be important factors to control bioabsorbable composite performance.

  • PDF

Interfacial Evaluation of Plasma-Treated Biodegradable Poly(p-dioxanone) Fiber/Poly(L-lactide) Composites Using Micromechanical Technique and Dynamic Contact Angle Measurement (Micromechanical 시험법과 동적접촉각 측정을 이용한 플라즈마 처리된 생분해성 Poly(p-dioxanone) 섬유강화 Poly(L-lactide) 복합재료의 계면물성 평가)

  • Park, Joung-Man;Kim, Dae-Sik;Kim, Sung-Ryong
    • Journal of Adhesion and Interface
    • /
    • v.4 no.1
    • /
    • pp.18-27
    • /
    • 2003
  • Interfacial properties and microfailure degradation mechanisms of the oxygen-plasma treated biodegradable poly(p-dioxanone) (PPDO) fiber/poly(L-lactide) (PLLA)composites were investigated for the orthopedic applications as implant materials using micromechanical technique and surface wettability measurement. PPDO fiber reinforced PLLA composite can provide good mechanical performance for long hydrolysis time. The degree of degradation for PPDO fiber and PLLA matrix was measured by thermal analysis and optical observation. IFSS and work of adhesion, $W_a$ between PPDO fiber and PLLA matrix showed the maximum at the plasma treatment time, at 60 seconds. Work of adhesion was lineally proportional to the IFSS. PPDO fiber showed ductile microfailure modes at We initial state, whereas brittle microfailure modes appeared with elapsing hydrolysis time. Interfacial properties and microfailure degradation mechanisms can be important factors to control bioabsorbable composites performance because IFSS changes with hydrolytic degradation.

  • PDF

Microstructural Analysis and High Temperature Compression Behavior of High Temperature Degradation on Hastelloy X (Hastelloy X의 고온열화에 따른 미세구조 및 고온압축특성)

  • Kim, Gil-Su;Jo, Tae-Sun;Seo, Young-Ik;Ryu, Woo-Seog;Kim, Young-Do
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.318-322
    • /
    • 2006
  • Short-term high temperature degradation test was conducted on Hastelloy X, a candidate tube material for high temperature gas-cooled reactors (HTGR), to evaluate the variation of microstructure and mechanical property in air at $1050^{\circ}C$ during 2000 h. The dominant oxide layer was Cr-oxide and a very shallow Cr-depleted region was observed below the oxide layer. At the beginning of degradation, the island shape $M_6C$ precipitate (M=Mo-rich, Fe, Ni, Cr) was observed in matrix region. After 2000 h degradation, precipitate shape was changed to the chain shape and increased amount of precipitate. These results influenced mechanical property of the specimen which exposed in high temperature. Yield strength was decreased from 115MPa to 89 MPa after 24 h and 2000 h exposure, respectively.

Study of Light-induced Degradation in Thin Film Silicon Solar Cells: Hydrogenated Amorphous Silicon Solar Cell and Nano-quantum Dot Silicon Thin Film Solar Cell (박막 실리콘 태양전지의 광열화현상 연구: 비정질 실리콘 태양전지 및 나노양자점 실리콘 박막 태양전지)

  • Kim, Ka-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • Light induced degradation is one of the major research challenges of hydrogenated amorphous silicon related thin film silicon solar cells. Amorphous silicon shows creation of metastable defect states, originating from elevated concentration of dangling bonds during light exposure. The metastable defect states work as recombination centers, and mostly affects quality of intrinsic layer in solar cells. In this paper we present results of light induced degradation in thin film silicon solar cells and discussion on physical origin, mechanism and practical solutions of light induced degradation in thin film silicon solar cells. In-situ light-soaking IV measurement techniques are presented. We also present thin film silicon material with silicon nano-quantum dots embedded within amorphous matrix, which shows superior stability during light-soaking. Our results suggest that solar cell using silicon nano-quantum dots in abosrber layer shows superior stability under light soaking, compared to the conventional amorphous silicon solar cell.

Accuracy Assessment of Forest Degradation Detection in Semantic Segmentation based Deep Learning Models with Time-series Satellite Imagery

  • Woo-Dam Sim;Jung-Soo Lee
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.1
    • /
    • pp.15-23
    • /
    • 2024
  • This research aimed to assess the possibility of detecting forest degradation using time-series satellite imagery and three different deep learning-based change detection techniques. The dataset used for the deep learning models was composed of two sets, one based on surface reflectance (SR) spectral information from satellite imagery, combined with Texture Information (GLCM; Gray-Level Co-occurrence Matrix) and terrain information. The deep learning models employed for land cover change detection included image differencing using the Unet semantic segmentation model, multi-encoder Unet model, and multi-encoder Unet++ model. The study found that there was no significant difference in accuracy between the deep learning models for forest degradation detection. Both training and validation accuracies were approx-imately 89% and 92%, respectively. Among the three deep learning models, the multi-encoder Unet model showed the most efficient analysis time and comparable accuracy. Moreover, models that incorporated both texture and gradient information in addition to spectral information were found to have a higher classification accuracy compared to models that used only spectral information. Overall, the accuracy of forest degradation extraction was outstanding, achieving 98%.

Cure and Thermal Degradation Kinetics of Epoxy/Organoclay Nanocomposite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.204-207
    • /
    • 2012
  • Epoxy nanocomposite was synthesized through the exfoliation of organoclay in an epoxy matrix, which was composed of diglycidyl ether of bisphenol A (DGEBA), 4,4'-methylene dianiline (MDA) and malononitrile (MN). Organoclay was prepared by treating the montmorillonite with octadecyl trimethyl ammonium bromide (ODTMA). The exfoliation of the organoclay was estimated by wide angle X-ray diffraction (WAXD) analysis. In order to measure the cure rate of DGEBA/MDA (30 phr)/MN (5 phr)/organoclay (3 phr), differential scanning calorimetry (DSC) analysis was performed at various heating rates, and the data were interpreted by Kissinger equation. Thermal degradation kinetics of the epoxy nanocomposite were studied by thermogravimetric analysis (TGA), and the data were introduced to the Ozawa equation. The activation energy for cure reaction was 45.8 kJ/mol, and the activation energy for thermal degradation was 143 kJ/mol.

Frequency Dependence of OLED Voltage Shift Degradation

  • Kim, Hyun-Jong;Kim, Su-Hwan;Chang, Seung-Wook;Lee, Dong-Kyu;Jeong, Dong-Seob;Chung, Ho-Kyoon;Hong, Yong-Taek
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1108-1111
    • /
    • 2007
  • OLED driving voltage shift can reduce the OLED display lifetime, especially for digitally driven AMOLED. By operating OLED at high frequency, we were able to suppress OLED voltage shift degradation, expecting improved AMOLED lifetime. We describe frequency dependence of voltage shift obtained from bias stress test of OLED.

  • PDF