• Title/Summary/Keyword: Matrix decoder

Search Result 60, Processing Time 0.024 seconds

Design of Vector Register Architecture in DSP Processor for Efficient Multimedia Processing

  • Wu, Chou-Pin;Wu, Jen-Ming
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.229-234
    • /
    • 2007
  • In this paper, we present an efficient instruction set architecture using vector register file hardware to accelerate operation of general matrix-vector operations in DSP microprocessor. The technique enables in-situ row-access as well as column access to the register files. It can reduce the number of memory access significantly. The technique is especially useful for block-based video signal processing kernels such as FFT/IFFT, DCT/IDCT, and two-dimensional filtering. We have applied the new instruction set architecture to in-loop deblocking filter processing in H.264 decoder. Performance comparisons show that the required load/store operations for the in-loop deblocking filter can be reduced about 42%. The architecture would improve the processing speed, and code density in DSP microprocessor especially for video signal processing substantially.

Error correction codes to manage multiple bit upset in on-chip memories (온칩 메모리 내 다중 비트 이상에 대처하기 위한 오류 정정 부호)

  • Jun, Hoyoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1747-1750
    • /
    • 2022
  • As shrinking the semiconductor process into the deep sub-micron to achieve high-density, low power and high performance integrated circuits, MBU (multiple bit upset) by soft errors is one of the major challenge of on-chip memory systems. To address the MBU, single error correction, double error detection and double adjacent error correction (SEC-DED-DAEC) codes have been recently proposed. But these codes do not resolve mis-correction. We propose the SEC-DED-DAEC-TAED(triple adjacent error detection) code without mis-corrections. The generated H-matrix by the proposed heuristic algorithm to accomplish the proposed code is implemented as hardware and verified. The results show that there is no mis-correction in the proposed codes and the 2-stage pipelined decoder can be employed on-chip memory system.

An Image Compression Algorithm Using the WDCT (Warped Discrete Cosine Transform) (WDCT(Warped Discrete Cosine Transform)를 이용한 영상 압축 알고리듬)

    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12B
    • /
    • pp.2407-2414
    • /
    • 1999
  • This paper introduces the concept of warped discrete cosine transform (WDCT) and an image compression algorithm based on the WDCT. The proposed WDCT is a cascade connection of a conventional DCT and all-pass filters whose parameters can be adjusted to provide frequency warping. In the proposed image compression scheme, the frequency response of the all-pass filter is controlled by a set of parameters with each parameter for a specified frequency range. For each image block, the best parameter is chosen from the set and is sent to the decoder as a side information along with the result of corresponding WDCT computation. For actual implementation, the combination of the all-pass IIR filters and the DCT can be viewed as a cascade of a warping matrix and the DCT matrix, or as a filter bank which is obtained by warping the frequency response of the DCT filter bank. Hence, the WDCT can be implemented by a single matrix computation like the DCT. The WDCT based compression, outperforms the DCT based compression, for high bit rate applications and for images with high frequency components.

  • PDF

Design of a 2.5V 10-bit 300MSPS CMOS D/A Converter (2.5V 10-bit 300MSPS 고성능 CMOS D/A 변환기의 설계)

  • Kwon, Dae-Hoon;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.7
    • /
    • pp.57-65
    • /
    • 2002
  • In this paper, a 2.5V 10-bit 300MSPS CMOS D/A Converter is described. The architecture of the D/A Converter is based on a current steering 8+2 segmented type, which reduces non-linearity error and other secondary effects. In order to achieve a high performance D/A Converter, a novel current cell with a low spurious deglitchnig circuit and a novel inverse thermomeer decoder are proposed. To verify the performance, it is integrated with $0.25{\mu}m$ CMOS 1-poly 5-metal technology. The effective chip area is $1.56mm^2$ and power consumption is about 84mW at 2.5V power supply. The simulation and experimental results show that the glitch energy is 0.9pVsec at fs=100MHz, 15pVsec at fs=300MHz in worst case, respectively. Further, both of INL and DNL are within ${\pm}$1.5LSB, and the SFDR is about 45dB when sampling, frequency, is 300MHz and output frequency is 1MHz.

Efficient Decoder Model of FTN Signal for (1+7) PSK Modulation based on DVB-S3 (DVB-S3기반 (1+7)PSK 변조방식에서 FTN 신호의 효율적인 복호 모델)

  • Baek, Chang-Uk;Jung, Ji-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.55-61
    • /
    • 2017
  • In DVB-S3 standard of satellite broadcasting systems, FTN technique is applied to LDPC codes with (1+7) PSK modulation. In standard, BICM-ID and BCJR decoding method are considered to alleviate performance degradation due to FTN processing. BICM-ID method improves performance by calculating a new LLR from hard-decision value of decoder output. BCJR also improves performance by calculating forward and backward matrix each other. However these two methods require high computational complexity. Therefore this paper proposed modified decoding method in order to reduce computational complexity without performance degradation.

The Efficient 32×32 Inverse Transform Design for High Performance HEVC Decoder (고성능 HEVC 복호기를 위한 효율적인 32×32 역변환기 설계)

  • Han, Geumhee;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.953-958
    • /
    • 2013
  • In this paper, an efficient hardware architecture is proposed for $32{\times}32$ inverse transform HEVC decoder. HEVC is a new image compression standard to deal with much larger image sizes compared with conventional image codecs, such as 4k, 8k images. To process huge image data effectively, it adopts various new block structures. Theses blocks consists of $4{\times}4$, $8{\times}8$, $16{\times}16$, and $32{\times}32$ block. This paper suggests an effective structures to process $32{\times}32$ inverse transform. This structure of inverse transform adopts the decomposed $16{\times}16$ matrixes of $32{\times}32$ matrix, and simplified the operations by implementing multiplying with shifters and adders. Additionally the operations frequency is downed by using multicycle paths. Also this structure can be easily adopted to a multi-size transform or a forward transform block in HEVC codec.

Efficient Partial Parallel Encoders for IRA Codes in DVB-S2 (DVB-S2 IRA Code를 위한 최적 부호화 방법)

  • Hwang, Sung-Oh;Lee, Jai-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11C
    • /
    • pp.901-906
    • /
    • 2010
  • Low density parity check (LDPC) code, first introduced by Gallager and re-discovered by MacKay et al, has attracted researcher's interest mainly due to their performance and low decoding complexity. It was remarkable that the performance is very close to Shannon capacity limit under the assumption of having long codeword length and iterative decoder. However, comparing to turbo codes widely used in the current mobile communication, the encoding complexity of LDPC codes has been regarded as the drawback. This paper proposes a solution for DVB-S2 LDPC encoder to reduce the encoder latency. We use the fast IRA encoder that use the transformation of the parity check matrix into block-wise form and the partial parallel process to reduce the number of system clocks for the IRA code encoding. We compare the proposed encoder with the current DVB-S2 encoder to show that the performance of proposal is better than that of the current DVB-S2 encoder.

Performance of Successive-Cancellation List Decoding of Extended-Minimum Distance Polar Codes (최소거리가 확장된 극 부호의 연속 제거 리스트 복호 성능)

  • Ryu, Daehyeon;Kim, Jae Yoel;Kim, Jong-Hwan;Kim, Sang-Hyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.1
    • /
    • pp.109-117
    • /
    • 2013
  • Polar codes are the first provable error correcting code achieving the symmetric channel capacity in a wide case of binary input discrete memoryless channel(BI-DMC). However, finite length polar codes have an error floor problem with successive-cancellation list(SCL) decoder. From previous works, we can solve this problem by concatenating CRC(Cyclic Redundancy Check) codes. In this paper we propose to make polar codes having extended-minimum distance from original polar codes without outer codes using correlation with generate matrix of polar codes and that of RM(Reed-Muller) codes. And we compare performance of proposed polar codes with that of polar codes concatenating CRC codes.

An analysis of optimal design conditions of LDPC decoder for IEEE 802.11n Wireless LAN Standard (IEEE 802.11n 무선랜 표준용 LDPC 복호기의 최적 설계조건 분석)

  • Jung, Sang-Hyeok;Na, Young-Heon;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.939-947
    • /
    • 2010
  • The LDPC(Low-Density Parity-Check) code, which is one of the channel encoding methods in IEEE 802.11n wireless LAN standard, has superior error-correcting capabilities. Since the hardware complexity of LDPC decoder is high, it is very important to take into account the trade-offs between hardware complexity and decoding performance. In this paper, the effects of LLR(Log-Likelihood Ratio) approximation on the performance of MSA(Min-Sum Algorithm)-based LDPC decoder are analyzed, and some optimal design conditions are derived. The parity check matrix with block length of 1,944 bits and code rate of 1/2 in IEEE 802.11n WLAN standard is used. In the case of $BER=10^{-3}$, the $E_b/N_o$ difference between LLR bit-widths (6,4) and (7,5) is 0.62 dB, and $E_b/N_o$ difference for iteration cycles 6 and 7 is 0.3 dB. The simulation results show that optimal BER performance can be achieved by LLR bit-width of (7,5) and iteration cycle of 7.

On the Existence of the (2,1) Mother Code of (n,n-1) Convolutional Code ((n,n-1) 길쌈부호에 대한 (2,1) 마더부호의 존재)

  • Jang, Hwan-Seok;Chung, Ha-Bong;Seong, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.4
    • /
    • pp.165-171
    • /
    • 2014
  • The rate of the channel code can be controlled by various methods. Puncturing is one of the methods of increasing the code rate, and the original code before puncturing is called the mother code. Any (n,k) convolutional code is obtainable by puncturing some mother codes, and the process of finding the mother code is necessary for designing the optimum channel decoder. In this paper, we proved that any (n,n-1) convolutional code has (2,1) mother codes regardless of the puncturing pattern and showed that they must be equivalent.