DOI QR코드

DOI QR Code

An analysis of optimal design conditions of LDPC decoder for IEEE 802.11n Wireless LAN Standard

IEEE 802.11n 무선랜 표준용 LDPC 복호기의 최적 설계조건 분석

  • 정상혁 (고등기술연구원 로봇생산기술센터) ;
  • 나영헌 (금오공과대학교 전자공학과) ;
  • 신경욱 (금오공과대학교 전자공학부)
  • Received : 2009.12.03
  • Accepted : 2009.12.16
  • Published : 2010.04.30

Abstract

The LDPC(Low-Density Parity-Check) code, which is one of the channel encoding methods in IEEE 802.11n wireless LAN standard, has superior error-correcting capabilities. Since the hardware complexity of LDPC decoder is high, it is very important to take into account the trade-offs between hardware complexity and decoding performance. In this paper, the effects of LLR(Log-Likelihood Ratio) approximation on the performance of MSA(Min-Sum Algorithm)-based LDPC decoder are analyzed, and some optimal design conditions are derived. The parity check matrix with block length of 1,944 bits and code rate of 1/2 in IEEE 802.11n WLAN standard is used. In the case of $BER=10^{-3}$, the $E_b/N_o$ difference between LLR bit-widths (6,4) and (7,5) is 0.62 dB, and $E_b/N_o$ difference for iteration cycles 6 and 7 is 0.3 dB. The simulation results show that optimal BER performance can be achieved by LLR bit-width of (7,5) and iteration cycle of 7.

IEEE 802.11n 무선 랜 표준의 채널 부호화 방법 중 하나인 LDPC(Low-Density Parity-Check) 부호는 오류정정 성능이 매우 우수하나 복호기 회로의 복잡도가 커서 복호성능과 하드웨어 복잡도 사이의 trade-off 관계를 고려한 설계가 중요하다. 본 논문에서는 최소합 알고리듬(Min-Sum Algorithm; MSA) 기반 LDPC 복호기에서 LLR(Log-Likelihood Ratio) 근사화가 복호성능에 미치는 영향을 분석하고, 이를 통해 LDPC 복호기의 최적 설계조건을 도출하였다. IEEE 802.11n 무선 랜 표준의 블록길이 1,944 비트, 부호화율 1/2의 LDPC 패리티 검사 행렬과 최소합 기반의 반복복호 알고리듬을 적용하여 LLR 근사화에 따른 비트오율(BER) 성능을 분석하였다. $BER=10^{-3}$에 대해 LLR 비트 폭 (6,4)와 (7,5)의 $E_b/N_o$는 0.62 dB의 차이를 보였으며, 최대 반복복호 횟수 6과 7에 대한 $E_b/N_o$의 차이는 약 0.3 dB로 나타났다. 시뮬레이션 결과로부터, LLR 근사화 비트 폭이 (7,5)이고 반복복호 횟수가 7인 경우에 가장 우수한 비트오율 성능을 나타내었다.

Keywords

References

  1. R.G. Gallager, Low-Density Parity-Check Codes, MIT Press, Cambridge, MA, 1963.
  2. T.J. Richardson and R.L. Urbanke, "The capacity of low-density parity-check codes under message-passing decoding," IEEE Trans. Inf. Theory, vol. 47, pp. 599-618, Feb. 2001. https://doi.org/10.1109/18.910577
  3. 이문호, 이광재, 여운동, LDPC(Low-Density Parity-Check), 한국과학기술정보연구원, 2005. 11.
  4. C. Berrou, A. Glavieux, and P. Thitimajshima, "Near Shannon limit error- correcting coding and decoding: Turbo- codes(1)", Proceeding of IEEE ICC'93, Geneva, Switzerland, pp. 1064-1074, 1993.
  5. D.J.C. MacKay and R. M. Neal. "Near Shannon limit performance of low density parity check codes", IEE Electronic Letter, vol. 32, no. 18, pp. 1645-1646, Aug. 1996. https://doi.org/10.1049/el:19961141
  6. 정상혁, 나영헌, 신경욱, "LLR 근사화에 따른 LDPC 디코더의 성능 분석", 한국해양정보통신학회 추계종합학술대회 논문집, pp. 405-409, 2009. 10.
  7. IEEE P802.11n/S3.07, "Draft Amendment to Standard for Information Technology-Telecommunications and information exchange between systems-Local and Metropolitan networks-specific require-ments-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Enhancements for Higher Throughput," 2008.
  8. "Digital Video Broadcasting(DVB)-Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications," European Telecommunications Standards Institute EN 302 307 v1.2.1, April, 2009.
  9. IEEE Std. 802.16e, IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1, 2005.
  10. IEEE Std 802.2an, IEEE Standard for Information Technology Telecommunica-tions and Information Exchange Between Systems Local and Metropolitan Area Networks-Specific Requirements Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer and Management Parameters for 10 Gb/s Operation, Type 10GBASE-T, 2006.
  11. 송영준, 통신공학을 위한 부호이론, 인피티북스, Mar., 2008.
  12. F.R. Kschischang, B.J. Frey, and H.A. Loeliger, "Factor graphs and the sum product algorithm," IEEE Transaction on Information Theory, vol. 47, pp. 498-519, Feb., 2001. https://doi.org/10.1109/18.910572
  13. J. Chen and M. Fossorier, "Density evolution for two improved BP-sased decoding algoritluns of LDPC codes," IEEE Commun. Lett., vol. 6, pp. 208-210, May, 2002. https://doi.org/10.1109/4234.1001666
  14. M. Fossorier, M. Mihaljevic and H. Imai, "Reduced complexity iterative decoding of low-density parity check codes based on belief propagation," IEEE Trans. Commun., vol. 47, pp. 673-680, May, 1999. https://doi.org/10.1109/26.768759