• Title/Summary/Keyword: Matrix Metalloproteinase

Search Result 722, Processing Time 0.03 seconds

Inhibitory effect of ginsenglactone A from Panax ginseng on the tube formation of human umbilical vein endothelial cells and migration of human ovarian cancer cells

  • Dahae Lee;Ranhee Kim;So-Ri Son;Ji-Young Kim;Sungyoul Choi;Ki Sung Kang;Dae Sik Jang
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.246-254
    • /
    • 2023
  • Background: Here, we aimed to assess the inhibitory effect of a new compound from Panax ginseng on the migration of human ovarian cancer cells and tube formation of human umbilical vein endothelial cells (HUVECs). Methods: A new compound, ginsenglactone A (1), was isolated from ginseng roots, together with seven known compounds (2-8). Spectroscopic data were used to elucidate the chemical structure of 1. The tubular structure formation in HUVECs was assessed by Mayer's hematoxylin staining. The migration of A2780 cells was evaluated using the scratch wound healing assay. Results: HUVECs treated with 1 had the statistically significant decrease in tubular structure formation compared to the HUVECs treated with compounds 2-8. This effect was enhanced by co-treatment with inhibitors for phosphatidylinositol 3-kinase (PI3K) (LY294002) and extracellular signal-regulated kinase (ERK) (U0126). Treatment with 1 decreased the expression of phosphorylation of ERK, PI3K, vascular endothelial growth factor receptor2 (VEGFR2), Akt, and mammalian target of rapamycin (mTOR). In addition, the ability of A2780 cells to cover the scratched area were also decreased. This effect was enhanced by co-treatment with U0126. Lastly, treatment with 1 decreased the phosphorylation of ERK, matrix metalloproteinase-9 (MMP-9), and MMP-2. Conclusion: These results suggest that ginsenglactone A is a potential inhibitor of HUVEC tubular structure formation and A2780 cellular migration, which may be helpful for understanding its anticancer mechanism.

Megakaryocyte-Derived IL-8 Acts as a Paracrine Factor for Prostate Cancer Aggressiveness through CXCR2 Activation and Antagonistic AR Downregulation

  • Sadan, Dahal;Prakash, Chaudhary;Yi-Sook, Jung;Jung-Ae, Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.210-218
    • /
    • 2023
  • Prostate cancer is the fifth leading cause of cancer-related mortality in men, primarily because of treatment resistance, recurrence, and metastasis. In the present study, we investigated the role of paracrine interleukin-8 (IL-8) in the antagonistic expression of IL-8 and androgen receptor (AR), and the contribution of IL-8 to prostate cancer aggressiveness. In hormone-responsive LNCaP cells that do not express IL-8, recombinant IL-8 treatment significantly increased expressions of IL-8, CXC chemokine receptor 2 (CXCR2), matrix metalloproteinase (MMP)-2/9, Snail, and vimentin. IL-8 treatment significantly decreased AR and E-cadherin expression. IL-8-induced gene expression changes were suppressed by navarixin, a CXCR1/2 inhibitor, and gallein, a Gβγ inhibitor. In PC-3 androgen-refractory prostate cancer cells, IL-8 knockdown reduced expressions of CXCR2, MMP-2/9, Snail, and vimentin, and increased AR and E-cadherin expressions at the mRNA and protein levels. Co-culture with MEG-01 human megakaryocytic cells secreting high levels of IL-8 induced gene expression changes in both LNCaP and PC-3 cells, similar to those induced by IL-8 treatment. The altered gene expressions were accompanied by significant activation of transcription factor Snail in LNCaP and PC-3 cells. Treatment with the CXCR blocker navarixin inhibited the invasion of PC-3 cells but not LNCaP cells. However, invasion induced by MEG-01 was inhibited by navarixin in both LNCaP and PC-3 cells. The collective findings demonstrate that IL-8 enhances CXCR2 expression, which antagonistically regulates AR expression. More importantly, through changes in IL-8/CXCR2-regulated gene expression, IL-8 induces antiandrogen therapy resistance and epithelial-mesenchymal transition in prostate cancer.

Losartan Reduces Remodeling and Apoptosis in an Adriamycin-Induced Cardiomyopathy Rat Model

  • Hyeon A Kim;Kwan Chang Kim;Hyeryon Lee;Young Mi Hong
    • Journal of Chest Surgery
    • /
    • v.56 no.5
    • /
    • pp.295-303
    • /
    • 2023
  • Background: The use of Adriamycin (ADR), also known as doxorubicin, as a chemotherapy agent is limited by its detrimental adverse effects, especially cardiotoxicity. Recent studies have emphasized the crucial role of angiotensin II (Ang-II) in the development of ADR-induced cardiomyopathy. This study aimed to explore the potential cardioprotective effects of losartan in a rat model of ADR-induced cardiomyopathy. Methods: Male Sprague-Dawley rats were randomly divided into 3 groups: a control group (group C), an ADR-treated group (ADR 5 mg/kg/wk for 3 weeks via intraperitoneal injections; group A), and co-treatment of ADR with losartan group (same dose of ADR and losartan; 10 mg/kg/day per oral for 3 weeks; group L). Western blot analysis was conducted to demonstrate changes in brain natriuretic peptide, collagen 1, tumor necrosis factor (TNF)-α, interleukin-6, matrix metalloproteinase (MMP)-2, B-cell leukemia/lymphoma (Bcl)-2, Bcl-2-associated X (Bax), and caspase-3 protein expression levels in left ventricular (LV) tissues from each group. Results: Losartan administration reduced LV hypertrophy, collagen content, and the expression of pro-inflammatory factors TNF-α and MMP-2 in LV tissue. In addition, losartan led to a decrease in the expression of the pro-apoptotic proteins Bax and caspase-3 and an increase in the expression of the anti-apoptotic protein Bcl-2. Moreover, losartan treatment induced a reduction in the apoptotic area compared to group A. Conclusion: In an ADR-induced cardiomyopathy rat model, co-administration of ADR with losartan presented cardioprotective effects by attenuating LV hypertrophy, pro-inflammatory factors, and apoptosis in LV tissue.

Increased interleukin-6 and TP53 levels in rotator cuff tendon repair patients with hypercholesterolemia

  • Jong Pil Yoon;Seung Gi Min;Jin-Hyun Choi;Hyun Joo Lee;Kyeong Hyeon Park;Sung Hyuk Yoon;Seong Soo Kim;Seok Won Chung;Hun-Min Kim;Dong Hyun Kim
    • Clinics in Shoulder and Elbow
    • /
    • v.25 no.4
    • /
    • pp.296-303
    • /
    • 2022
  • Background: A previous study reported that hyperlipidemia increases the incidence of tears in the rotator cuff tendon and affects healing after repair. The aim of our study was to compare the gene and protein expression of torn rotator cuff tendons in patients both with and without hypercholesterolemia. Methods: Thirty patients who provided rotator cuff tendon samples were classified into either a non-hypercholesterolemia group (n=19, serum total cholesterol [TC] <200 mg/dL) and hypercholesterolemia group (n=11, serum TC ≥240 mg/dL) based on their concentrations of serum TC. The expression of various genes of interest, including COL1A1, IGF1, IL-6, MMP2, MMP3, MMP9, MMP13, TNMD, and TP53, was analyzed by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, Western blot analysis was performed on the proteins encoded by interleukin (IL)-6 and TP53 that showed significantly different expression levels in real-time qRT-PCR. Results: Except for IGF1, the gene expression levels of IL-6, MMP2, MMP9, and TP53 were significantly higher in the hypercholesterolemic group than in the non-hypercholesterolemia group. Western blot analysis confirmed significantly higher protein levels of IL-6 and TP53 in the hypercholesterolemic group (p<0.05). Conclusions: We observed an increase in inflammatory cytokine and matrix metalloproteinase (MMP) levels in hypercholesterolemic patients with rotator cuff tears. Increased levels of IL-6 and TP53 were observed at both the mRNA and protein levels. We suggest that the overexpression of IL-6 and TP53 may be a specific feature in rotator cuff disease patients with hypercholesterolemia.

Anti-metastatic Effect of Taraxacum Officinale Water and Ethanol Extracts Through the Regulation of Epithelial-Mesenchymal Transition in Huh7 Cells (Huh7 간암세포에서 민들레 추출물의 상피간엽전환 억제를 통한 항전이 효과)

  • Hyun-Seo Yoon;Hyun An;Chung-Mu Park
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.3
    • /
    • pp.59-67
    • /
    • 2023
  • Purpose : Epithelial-to-mesenchymal transition (EMT) is recognized as an important cellular response in metastatic proceduresand characterized by loss of cellular polarity as well as gain of mesenchymal features, which enables migration and invasion. Hepatocellular carcinoma (HCC) is one of the most common primary carcinomas in the liver and exhibits a poor prognosis due to frequent extrahepatic metastasis. Taraxacum officinale has been used for a long time in oriental medicine because of its various pharmacological activitiessuch as anti-rheumatic, anti-inflammatory, antioxidative, and anticarcinogenic activities. In this study, the anti-metastatic activity of T. officinale water extract (TOWE) and ethanol extract (TOEE) was investigated through the regulation of EMT in the Huh7 cells. Methods : The effects of TOWE and TOEE on migratory and invasive activities were investigated by wound healing and in vitro invasion assays. Western blot analysis was also applied to analyze protein expression levels associated with EMT and their upstream transcription factors in Huh7 cells. Results : TOWE and TOEE treatment potently inhibited migration and invasion of Huh7 cells compared to the untreated group. Both extracts treatment inhibited protein expression levels of N-cadherin, matrix metalloproteinase (MMP)-9, and vimentin while E-cadherin was significantly accelerated. In addition, the activated status of transcription factors, Snail, nuclear factor (NF)-κ B, and zinc finger E-box binding homeobox (ZEB)1 was also inhibited with statistical significance. In comparison to both extracts, TOEE more potently attenuated migration, invasion, and EMT markers as well as their transcription factors in Huh7 cells than TOWE, which means that TOEE might possess more functional phytochemicals than TOWE. Conclusion : Consequently, TOWE and TOEEattenuated metastatic activity of hepatocellular carcinoma through the regulation of EMT markers and their transcription factors in Huh7 cells, which means that T. officinale might be a promising strategy for a chemopreventive agent against HCC metastasis.

Study of the Effect and Underlying Mechanism of Clove Extract on Monosodium Iodoacetate-Induced Osteoarthritis in Rats (정향(丁香) 추출물이 골관절염 흰쥐에 미치는 효과 및 기전 연구)

  • Jin A Lee;Min Ju Kim;Seong-Wook Seo;Mi-Rae Shin
    • The Journal of Internal Korean Medicine
    • /
    • v.43 no.6
    • /
    • pp.1089-1104
    • /
    • 2022
  • Objective: The aim of this study was to identify the efficacy and underlying mechanism of cloves as an osteoarthritis (OA) treatment in a monosodium iodoacetate (MIA)-induced rat OA model. Osteoarthritis (OA) is nowadays one of the most prevalent degenerative joint diseases. Methods: Sprague-Dawley rats treated with MIA (50 μL; 80 mg/mL) were used as in vivo OA models. Cloves (100 and 200 mg/kg b.w.) were administered orally once daily for 2 weeks from 7 days after MIA injection. Changes in hindpaw weight distribution (HWD) were measured as a joint discomfort index. Activation markers related to inflammatory responses and cartilage degeneration in the right knee joints were evaluated by serum analysis and western blotting. Results: HWD decreased in the MIA control group but showed a dose-dependent elevation after clove treatment. Clove treatment inhibited inflammatory factors by PI3K/Akt/NF-κB signaling pathways, while also activating antioxidant factors through Sirt1/AMPK signaling pathways. Clove treatment also suppressed matrix metalloproteinase (MMP) overexpression and significantly increased the levels of tissue inhibitors of metalloproteinases (TIMPs). Conclusions: Treatment with cloves effectively reversed MIA-induced effects. Therefore, clove treatment could have the potential to protect against or treat OA.

The Effect of γ-Aminobutyric Acid Intake on UVB- Induced Skin Damage in Hairless Mice

  • Hairu Zhao;Bomi Park;Min-Jung Kim;Seok-Hyun Hwang;Tae-Jong Kim;Seung-Un Kim;Iksun Kwon;Jae Sung Hwang
    • Biomolecules & Therapeutics
    • /
    • v.31 no.6
    • /
    • pp.640-647
    • /
    • 2023
  • The skin, the largest organ in the body, undergoes age-related changes influenced by both intrinsic and extrinsic factors. The primary external factor is photoaging which causes hyperpigmentation, uneven skin surface, deep wrinkles, and markedly enlarged capillaries. In the human dermis, it decreases fibroblast function, resulting in a lack of collagen structure and also decreases keratinocyte function, which compromises the strength of the protective barrier. In this study, we found that treatment with γ-aminobutyric acid (GABA) had no toxicity to skin fibroblasts and GABA enhanced their migration ability, which can accelerate skin wound healing. UVB radiation was found to significantly induce the production of matrix metalloproteinase 1 (MMP-1), but treatment with GABA resulted in the inhibition of MMP-1 production. We also investigated the enhancement of filaggrin and aquaporin 3 in keratinocytes after treatment with GABA, showing that GABA can effectively improve skin moisturization. In vivo experiments showed that oral administration of GABA significantly improved skin wrinkles and epidermal thickness. After the intake of GABA, there was a significant decrease observed in the increase of skin thickness measured by calipers and erythema. Additionally, the decrease in skin moisture and elasticity in hairless mice exposed to UVB radiation was also significantly restored. Overall, this study demonstrates the potential of GABA as functional food material for improving skin aging and moisturizing.

Chondroprotective and Anti-inflammatory Effects of ChondroT, A New Complex Herbal Medication

  • Jung Up Park;WonWoo Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.103-103
    • /
    • 2022
  • Ganghwaljetongyeum (GHJTY) is a complex herbal decoction comprising 18 plants; it is used to treat arthritis. In order to develop a new anti-arthritic herbal medication, we selected 5 out of 18 GHJTY plants by using bioinformatics analysis. The new medication, called ChondroT, comprised water extracts of Osterici Radix, Lonicerae Folium, Angelicae Gigantis Radix, Clematidis Radix, and Phellodendri Cortex. This study was designed to investigate its chondroprotective and anti-inflammatory effects to develop an anti-arthritic herb medicine. ChondroT was validated using a convenient and accurate high-performance liquid chromatography. photodiode array (HPLC-PDA) detection method for simultaneous determination of its seven reference components. The concentrations of the seven marker constituents were in the range of 0.81-5.46 mg/g. The chondroprotective effects were evaluated based on SW1353 chondrocytes and matrix metalloproteinase 1 (MMP1) expression. In addition, the anti-inflammatory effects of ChondroT were studied by Western blotting of pro-inflammatory enzymes and by enzyme-linked immunosorbent assay (ELISA) of inflammatory mediators in lipopolysaccharides (LPS)-induced RAW264.7 cells. ChondroT enhanced the growth of SW1353 chondrocytes and also significantly inhibited IL-1β-induced MMP-1 expression. However, ChondroT did not show any effects on the growth of HeLa and RAW264.7 cells. The expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) was induced by LPS in RAW264.7 cells, which was significantly decreased by pre-treatment with ChondroT. In addition, ChondroT reduced the activation of NF-κB and production of inflammatory mediators, such as IL-1β, IL-6, PGE2, and nitric oxide (NO) in LPS-induced RAW264.7 cells. These results show that ChondroT exerted a chondroprotective effect and demonstrated multi-target mechanisms related to inflammation and arthritis. In addition, the suppressive effect was greater than that exhibited by GHJTY, suggesting that ChondroT, a new complex herbal medication, has therapeutic potential for the treatment of arthritis.

  • PDF

Ethanol Extracts from the Roots of Reed Prevent Skin Hyperpigmentation, Wrinkle Formation and Dryness

  • Sung Hyeok Kim;Sohee Jang;Hyun Jung Koo;Seung Namkoong;Sungsil Hong;Mi-Ja Kim;Chang Woo Ha;Hyosun Lim;Youn Kyu Kim;Eun-Hwa Sohn
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.49-49
    • /
    • 2021
  • The roots of reed (Phragmites australis) were used in traditional medicine to treat respiratory problems, including symptoms such as high fever and cough. In this study, we identified the active ingredient from 70% EtOH reed root extract, and evaluated the whitening, wrinkle improvement and moisturizing effects. The content of p-coumaric acid, the active ingredient of the roots of P. australis, was slightly lower in 70% EtOH extract than in 100% EtOH extract. However, 70% EtOH reed root extract showed similar or higher effect in reducing power, DPPH, hydrogen peroxide scavenging, and nitric oxide scavenging activity compared to 100% EtOH extract. Moreover, 70% EtOH reed root extract markedly inhibited melanogenesis in B16F10 cells treated with α-melanocyte-stimulating hormone. 70% EtOH reed root extract significantly inhibited the mRNA expression of matrix metalloproteinase-1 (MMP-1) and reduced elastase activity in HDF human dermal fibroblasts. In addition, 70% EtOH reed root extract ameliorated hyaluronic acid synthase-2 (HAS-2) expression induced by ultraviolet B (UVB) stimulation in HaCaT keratinocytes. The results of this study suggest that 70% EtOH reed root extract has potential as a functional cosmetic material related to whitening, wrinkle improvement, and moisturizing.

  • PDF

Avenanthramide-C Shows Potential to Alleviate Gingival Inflammation and Alveolar Bone Loss in Experimental Periodontitis

  • Su-Jin Kim;Se Hui Lee;Binh Do Quang;Thanh-Tam Tran;Young-Gwon Kim;Jun Ko;Weon-Young Choi;Sun Young Lee;Je-Hwang Ryu
    • Molecules and Cells
    • /
    • v.46 no.10
    • /
    • pp.627-636
    • /
    • 2023
  • Periodontal disease is a chronic inflammatory disease that leads to the gradual destruction of the supporting structures of the teeth including gums, periodontal ligaments, alveolar bone, and root cementum. Recently, interests in alleviating symptoms of periodontitis (PD) using natural compounds is increasing. Avenanthramide-C (Avn-C) is a polyphenol found only in oats. It is known to exhibit various biological properties. To date, the effect of Avn-C on PD pathogenesis has not been confirmed. Therefore, this study aimed to verify the protective effects of Avn-C on periodontal inflammation and subsequent alveolar bone erosion in vitro and in vivo. Upregulated expression of catabolic factors, such as matrix metalloproteinase 1 (MMP1), MMP3, interleukin (IL)-6, IL-8, and COX2 induced by lipopolysaccharide and proinflammatory cytokines, IL-1β, and tumor necrosis factor α (TNF-α), was dramatically decreased by Avn-C treatment in human gingival fibroblasts and periodontal ligament cells. Moreover, alveolar bone erosion in the ligature-induced PD mouse model was ameliorated by intra-gingival injection of Avn-C. Molecular mechanism studies revealed that the inhibitory effects of Avn-C on the upregulation of catabolic factors were mediated via ERK (extracellular signal-regulated kinase) and NF-κB pathway that was activated by IL-1β or p38 MAPK and JNK signaling that was activated by TNF-α, respectively. Based on this study, we recommend that Avn-C may be a new natural compound that can be applied to PD treatment.