• 제목/요약/키워드: Matrix Equation

검색결과 1,072건 처리시간 0.042초

DETERMINATION OF TRANSIENT WEAR DISTANCE IN THE ADHESIVE WEAR OF A6061 ALUMINIUM ALLOY REINFORCED WITH ALUMINA PARTICLES

  • Yang, L.J.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.217-218
    • /
    • 2002
  • An integrated adhesive wear model was proposed to determine the transient wear and steady-state wear of aluminium alloy matrix composites. The transient wear volume was described by an exponential equation, while the steady-state wear was governed by a revised Archard equation, in which both the transient wear volume and transient sliding distance were excluded. A mathematical method was developed to determine both the transient distance and the net steady-state wear coefficient. Experimental wear tests were carried out on three types of commercial A6061 aluminum alloy matrix composites reinforced with 10%, 15% and 20% alumina particles. More accurate wear coefficient values were obtained with the proposed model. The average standard wear coefficient, as determined by the original Archard equation, was found to be about 51% higher.

  • PDF

PERTURBATION ANALYSIS FOR THE POSITIVE DEFINITE SOLUTION OF THE NONLINEAR MATRIX EQUATION $X-\sum^m_{i=1}A^{\ast}_iX^{\delta_i}A_i=Q$

  • Duan, Xue-Feng;Wang, Qing-Wen;Li, Chun-Mei
    • Journal of applied mathematics & informatics
    • /
    • 제30권3_4호
    • /
    • pp.655-663
    • /
    • 2012
  • Based on the elegant properties of the spectral norm and Thompson metric, we firstly give two perturbation estimates for the positive definite solution of the nonlinear matrix equation $$X-\sum^m_{i=1}A^{\ast}_iX^{\delta_i}A_i=Q(0<|{\delta}_i|<1)$$ which arises in an optimal interpolation problem.

Lyapunov 행렬방정식의 역해를 이용한 선형 이산시스템의 공분산제어 (On covariance control theory for linear discrete systems via inverse solution of the Lyapunov matrix equation)

  • 김호찬;최종호;김상현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.443-445
    • /
    • 1998
  • In this paper, an alternate method for state-covariance assignment for SISO(single input single output) linear systems is proposed. This method is based on the inverse solution of the Lyapunov matrix equation and the resulting formulas are similar in structure to the formulas for pole placement. Further, the set of all assignable covariance matrices to a SISO linear system is also characterized.

  • PDF

Application SVD-Least Square Algorithm for solving astronomical ship position basing on circle of equal altitude equation

  • Nguyen, Van Suong;Im, Namkyun
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2013년도 추계학술대회
    • /
    • pp.130-132
    • /
    • 2013
  • This paper presents an improvement for calculating method of astronomical vessel position with circle of equal altitude equation based on using a virtual object in sun and two stars observation. In addition, to enhance the accuracy of ship position achieved from solving linear matrix system, and surmount the disadvantages on rank deficient matrices situation, the authors used singular value decomposition (SVD) in least square method instead of normal equation and QR decomposition, so, the solution of matrix system will be available in all situation. As proposal algorithm, astronomical ship position will give more accuracy than previous methods.

  • PDF

블럭펄스함수를 이용한 시스템 상태추정의 계층별접근에 관한 연구 (A hierarchical approach to state estimation of time-varying linear systems via block pulse function)

  • 안두수;안비오;임윤식;이재춘
    • 대한전기학회논문지
    • /
    • 제45권3호
    • /
    • pp.399-406
    • /
    • 1996
  • This paper presents a method of hierarchical state estimation of the time-varying linear systems via Block-pulse function(BPF). When we estimate the state of the systems where noise is considered, it is very difficult to obtain the solutions because minimum error variance matrix having a form of matrix nonlinear differential equations is included in the filter gain calculation. Therefore, hierarchical approach is adapted to transpose matrix nonlinear differential equations to a sum of low order state space equation from and Block-pulse functions are used for solving each low order state space equation in the form of simple and recursive algebraic equation. We believe that presented methods are very attractive nd proper for state estimation of time-varying linear systems on account of its simplicity and computational convenience. (author). 13 refs., 10 figs.

  • PDF

AN EXPLICIT FORM OF POWERS OF A $2{\times}2$ MATRIX USING A RECURSIVE SEQUENCE

  • Kim, Daniel;Ryoo, Sangwoo;Kim, Taesoo;SunWoo, Hasik
    • 충청수학회지
    • /
    • 제25권1호
    • /
    • pp.19-25
    • /
    • 2012
  • The purpose of this paper is to derive powers $A^{n}$ using a system of recursive sequences for a given $2{\times}2$ matrix A. Introducing a recursive sequence we have a quadratic equation. Solutions to this quadratic equation are related with eigenvalues of A. By solving this quadratic equation we can easily obtain an explicit form of $A^{n}$. Our method holds when A is defined not only on the real field but also on the complex field.

A developed hybrid method for crack identification of beams

  • Vosoughi, Ali.R.
    • Smart Structures and Systems
    • /
    • 제16권3호
    • /
    • pp.401-414
    • /
    • 2015
  • A developed hybrid method for crack identification of beams is presented. Based on the Euler-Bernouli beam theory and concepts of fracture mechanics, governing equation of the cracked beams is reformulated. Finite element (FE) method as a powerful numerical tool is used to discritize the equation in space domain. After transferring the equations from time domain to frequency domain, frequencies and mode shapes of the beam are obtained. Efficiency of the governed equation for free vibration analysis of the beams is shown by comparing the results with those available in literature and via ANSYS software. The used equation yields to move the influence of cracks from the stiffness matrix to the mass matrix. For crack identification measured data are produced by applying random error to the calculated frequencies and mode shapes. An objective function is prepared as root mean square error between measured and calculated data. To minimize the function, hybrid genetic algorithms (GAs) and particle swarm optimization (PSO) technique is introduced. Efficiency, Robustness, applicability and usefulness of the mixed optimization numerical tool in conjunction with the finite element method for identification of cracks locations and depths are shown via solving different examples.

Dependency of the Critical Carbon Content of Electrical Conductivity for Carbon Powder-Filled Polymer Matrix Composites

  • Shin, Soon-Gi
    • 한국재료학회지
    • /
    • 제25권8호
    • /
    • pp.365-369
    • /
    • 2015
  • This paper investigates the dependency of the critical content for electrical conductivity of carbon powder-filled polymer matrix composites with different matrixes as a function of the carbon powder content (volume fraction) to find the break point of the relationships between the carbon powder content and the electrical conductivity. The electrical conductivity jumps by as much as ten orders of magnitude at the break point. The critical carbon powder content corresponding to the break point in electrical conductivity varies according to the matrix species and tends to increase with an increase in the surface tension of the matrix. In order to explain the dependency of the critical carbon content on the matrix species, a simple equation (${V_c}^*=[1+ 3({{\gamma}_c}^{1/2}-{{\gamma}_m}^{1/2})^2/({\Delta}q_cR]^{-1}$) was derived under some assumptions, the most important of which was that when the interfacial excess energy introduced by particles of carbon powder into the matrix reaches a universal value (${\Delta}q_c$), the particles of carbon powder begin to coagulate so as to avoid any further increase in the energy and to form networks that facilitate electrical conduction. The equation well explains the dependency through surface tension, surface tensions between the particles of carbon powder.

THE BINOMIAL METHOD FOR A MATRIX SQUARE ROOT

  • Kim, Yeon-Ji;Seo, Jong-Hyeon;Kim, Hyun-Min
    • East Asian mathematical journal
    • /
    • 제29권5호
    • /
    • pp.511-519
    • /
    • 2013
  • There are various methods for evaluating a matrix square root, which is a solvent of the quadratic matrix equation $X^2-A=0$. We consider new iterative methods for solving matrix square roots of M-matrices. Particulary we show that the relaxed binomial iteration is more efficient than Newton-Schulz iteration in some cases. And we construct a formula to find relaxation coefficients through statistical experiments.

GENERALIZATION OF LAGUERRE MATRIX POLYNOMIALS FOR TWO VARIABLES

  • Ali, Asad;Iqbal, Muhammad Zafar
    • 호남수학학술지
    • /
    • 제43권1호
    • /
    • pp.141-151
    • /
    • 2021
  • The main object of the present paper is to introduce the generalized Laguerre matrix polynomials for two variables. We prove that these matrix polynomials are characterized by the generalized hypergeometric matrix function. An explicit representation, generating functions and some recurrence relations are obtained here. Moreover, these matrix polynomials appear as solution of a differential equation.