• Title/Summary/Keyword: Matrix Converter

Search Result 181, Processing Time 0.027 seconds

Voltage Modulation of Matrix Converter Using Discontinuous Carrier Modulation and Application of Three-Phase Induction Motor V/F Control (불연속 캐리어 변조 방식을 이용한 매트릭스 컨버터의 전압 변조 및 3상 유도 전동기 V/F 제어의 적용)

  • Bu, Hanyoung;Yoon, Chun-gi;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.399-400
    • /
    • 2017
  • 본 논문에서는 불연속 캐리어 변조 방법을 이용한 매트릭스 컨버터의 전압 변조 방법을 사용하였다. 제안한 방법을 통해 출력 전압을 합성하고, 역률 1의 정현파를 갖는 입력 전류를 얻을 수 있다. 그리고 고차 고조파로 인한 문제를 방지하기 위해 입력 필터를 설계한다. 마지막으로, 제안한 방법을 유도전동기의 V/F 제어에 적용하고, PSIM을 이용한 시뮬레이션 결과를 통해 그 타당성을 검토하였다.

  • PDF

Design and analysis of input finer for 3 Phase Matrix Converter (매트릭스 컨버터 입력 LC 필터 설계 및 분석)

  • Cha, Han-Ju;Kim, Woo-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.146-148
    • /
    • 2009
  • 본 논문에서는 매트릭스 컨버터의 입력 필터 설계를 하고, 시뮬레이션하여 타당성을 검증하고 분석한다. 매트릭스 컨버터는 18개의 양방향 스위치로 구성되어 있으며, 출력 전압을 합성하기 위해 각각의 스위치가 빠르게 온-오프 한다. 이러한 스위칭 과정에서 고차 고조파가 발생하고, 이 고조파는 매트릭스 컨버터 주위에 연결된 각종 기기에 영향을 미친다. 따라서 고차 고조파를 줄이기 위해 계통과 매트릭스 컨버터 사이에 입력 필터를 설치하여 이러한 영향을 줄여야 한다. 입력 필터의 L과 C, 그리고 공진 주파수 근처의 값을 줄이기 위한 댐핑 저항 값을 계산하는 방법을 소개하고, 타당성을 검증한다.

  • PDF

Design of a 2.5V 10-bit 300MSPS CMOS D/A Converter (2.5V 10-bit 300MSPS 고성능 CMOS D/A 변환기의 설계)

  • Kwon, Dae-Hoon;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.7
    • /
    • pp.57-65
    • /
    • 2002
  • In this paper, a 2.5V 10-bit 300MSPS CMOS D/A Converter is described. The architecture of the D/A Converter is based on a current steering 8+2 segmented type, which reduces non-linearity error and other secondary effects. In order to achieve a high performance D/A Converter, a novel current cell with a low spurious deglitchnig circuit and a novel inverse thermomeer decoder are proposed. To verify the performance, it is integrated with $0.25{\mu}m$ CMOS 1-poly 5-metal technology. The effective chip area is $1.56mm^2$ and power consumption is about 84mW at 2.5V power supply. The simulation and experimental results show that the glitch energy is 0.9pVsec at fs=100MHz, 15pVsec at fs=300MHz in worst case, respectively. Further, both of INL and DNL are within ${\pm}$1.5LSB, and the SFDR is about 45dB when sampling, frequency, is 300MHz and output frequency is 1MHz.

Double Line Voltage Synthesis Strategy for Three-to-Five Phase Direct Matrix Converters

  • Wang, Rutian;Zhao, Yanfeng;Mu, Xingjun;Wang, Weiquan
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.81-91
    • /
    • 2018
  • This paper proposes a double line voltage synthesis (DLVS) strategy for three-to-five phase direct matrix converters. In the proposed strategy, the input and expected output voltages are divided into 6 segments and 10 segments, respectively. In addition, in order to obtain the maximum voltage transfer ratio (VTR), the input line voltages and "source key" should be selected reasonably according to different combinations of input and output segments. Then, the corresponding duty ratios are calculated to determine the switch sequences in different segment combinations. The output voltages and currents are still sinusoidal and symmetrical with little lower order harmonics under unbalanced or distorted input voltages by using this strategy. In addition, the common mode voltage (CMV) can be suppressed by rearranging some of the switching states. This strategy is analyzed and studied by a simulation model established in MATLAB/Simulink and an experimental platform, which is controlled by a DSP and FPGA. Simulation and experimental results verify the feasibility and validity of the proposed DLVS strategy.

Research on Grid Side Power Factor of Unity Compensation Method for Matrix Converters

  • Xia, Yihui;Zhang, Xiaofeng;Ye, Zhihao;Qiao, Mingzhong
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1380-1392
    • /
    • 2019
  • Input filters are very important to matrix converters (MCs). They are used to improve grid side current waveform quality and to reduce the input voltage distortion supplied to the grid side. Due to the effects of the input filter and the output power, the grid side power factor (PF) is not at unity when the input power factor angle is zero. In this paper, the displacement angle between the grid side phase current and the phase voltage affected by the input filter parameters and output power is analyzed. Based on this, a new grid side PF unity compensation method implemented in the indirect space vector pulse width modulation (ISVPWM) method is presented, which has a larger compensation angle than the traditional compensation method, showing a higher grid side PF at unity in a wide output power range. Simulation and experimental results verify that the analysis of the displacement angle between the grid side phase current and the phase voltage affected by the input filter and output power is right and that the proposed compensation method has a better grid side PF at unity.

An Accurate Modeling Approach to Compute Noise Transfer Gain in Complex Low Power Plane Geometries of Power Converters

  • Nguyen, Tung Ngoc;Blanchette, Handy Fortin;Wang, Ruxi
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.411-421
    • /
    • 2017
  • An approach based on a 2D lumped model is presented to quantify the voltage transfer gain (VTG) in power converter low power planes. The advantage of the modeling approach is the ease with which typical noise reduction devices such as decoupling capacitors or ferrite beads can be integrated into the model. This feature is enforced by a new modular approach based on effective matrix partitioning, which is presented in the paper. This partitioning is used to decouple power plane equations from external device impedance, which avoids the need for rewriting of a whole set of equation at every change. The model is quickly solved in the frequency domain, which is well suited for an automated layout optimization algorithm. Using frequency domain modeling also allows the integration of frequency-dependent devices such inductors and capacitors, which are required for realistic computation results. In order to check the precision of the modeling approach, VTGs for several layout configurations are computed and compared with experimental measurements based on scattering parameters.

Design of Robust PI Controller for DC-DC Converter (DC-DC 컨버터에 대한 강인한 PI 제어기 설계)

  • Lee, Hyun-Seok;Ko, Chang-Min;Park, Seong-Hun;Park, Seung-Kyu;Ahn, Ho-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.997_998
    • /
    • 2009
  • Nowadays DC-DC converter has been used widely in electronic production. It has a high requirement in wide input voltage, load variations, stability, providing a fast transient response and the most important thing is that it can be applied easily and efficiently. However, it is not easy to be controlled because of nonlinear system. This study introduces a fuzzy linear control design method for nonlinear systems with optimal $H^{\infty}$ robustness performance. First, the Takagi and Sugeno fuzzy linear model is employed to approximate a nonlinear system. Next, based on the fuzzy linear model, a fuzzy controller is developed to stabilize the nonlinear system, and at the same time the effect of external disturbance on control performance is attenuated to a minimum level. Thus based on the fuzzy linear model, ��$H^{\infty}$ performance design can be achieved in nonlinear control systems. Linear matrix inequality (LMI) techniques are employed to solve this robust fuzzy control problem. PI control structure is used and the control gains are determined based on $H^{\infty}$ control.

  • PDF

Fully nonlinear time-domain simulation of a backward bent duct buoy floating wave energy converter using an acceleration potential method

  • Lee, Kyoung-Rok;Koo, Weoncheol;Kim, Moo-Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.513-528
    • /
    • 2013
  • A floating Oscillating Water Column (OWC) wave energy converter, a Backward Bent Duct Buoy (BBDB), was simulated using a state-of-the-art, two-dimensional, fully-nonlinear Numerical Wave Tank (NWT) technique. The hydrodynamic performance of the floating OWC device was evaluated in the time domain. The acceleration potential method, with a full-updated kernel matrix calculation associated with a mode decomposition scheme, was implemented to obtain accurate estimates of the hydrodynamic force and displacement of a freely floating BBDB. The developed NWT was based on the potential theory and the boundary element method with constant panels on the boundaries. The mixed Eulerian-Lagrangian (MEL) approach was employed to capture the nonlinear free surfaces inside the chamber that interacted with a pneumatic pressure, induced by the time-varying airflow velocity at the air duct. A special viscous damping was applied to the chamber free surface to represent the viscous energy loss due to the BBDB's shape and motions. The viscous damping coefficient was properly selected using a comparison of the experimental data. The calculated surface elevation, inside and outside the chamber, with a tuned viscous damping correlated reasonably well with the experimental data for various incident wave conditions. The conservation of the total wave energy in the computational domain was confirmed over the entire range of wave frequencies.

Acoustic Noise Reduction and Power Factor Correction in Switched Reluctance Motor Drives

  • Rashidi, Amir;Saghaiannejad, Sayed Mortaza;Mousavi, Sayed Javad
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • In this paper, a four-phase 8/6-pole 4-kW SR motor drive model is presented. Based on experimental data, the model allows an accurate simulation of a drive in dynamic operation. Simulations are performed and a laboratory type set-up is built based on a TI TMS320F2812 platform to experimentally verify the theoretical results obtained for a SR motor. To reduce acoustic noise and to correct the power factor of this drive, a two-stage power converter is proposed that uses a current source rectifier (CSR) as the input stage for the asymmetrical converter of the studied SRM. Employing the space-vector modulation (SVM) method in matrix converters, the CSR switching allows the dc link's capacitors to be eliminated and the power factor of the SRM drive to be improved. As the electrical motive force (emf) is directly proportional to the rotor speed, the input voltage to the machine can be programmed to be a function of the speed with the modulation index of the CSR, leading to a reduction in the acoustic noise of the SRM drive. Simulation of the whole SRM drive system is performed using MATLAB-Simulink. The results fully comply with the required conditions such as power factor correction with an improvement in the THD.

Development of Vibration Analysis Software, PFADS-R3 using Power Flow Analysis (파워흐름해석법을 이용한 진동해석 소프트웨어, PFADS-R3 개발)

  • 홍석윤;서성훈;박영호;길현권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.824-830
    • /
    • 2003
  • The Power Flow Finite Element Method(PFFEM) offers very promising results in predicting the vibration responses of system structures, and the first PFFEM software, PFADS has been developed in Seoul National University for the vibration predictions and analysis of coupled system structures in medium-to-high frequency ranges. PFFEM is numerical method which solves energy governing equation using finite element technique for complicated structures where the exact solutions are not available. Through the upgrades, the current version PFADS R3 could cover the general beam and plate structures including various kinds of beam-plate rigid joints, spring-damper connection and rigid body connection within beam and plate in addition. This software is composed of three parts; translator, model converter and solver. The translator makes its own FE-model from bulk data of commercial FE software, and the model converter is used to convert FE-model to PFFE-model automatically. The solver calculates vibrational energy density and intensity for PFFE-model by solving global matrix equations of PFFEM. For the applications of PFADS R3, two vehicle models and a container model are examined with respect to major parameters, and reliable results are obtained.

  • PDF