• Title/Summary/Keyword: Matrix Based Summaries

Search Result 8, Processing Time 0.019 seconds

Frequency Matrix Based Summaries of Negative and Positive Reviews

  • Almuhannad Sulaiman Alorfi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.101-109
    • /
    • 2023
  • This paper discusses the use of sentiment analysis and text summarization techniques to extract valuable information from the large volume of user-generated content such as reviews, comments, and feedback on online platforms and social media. The paper highlights the effectiveness of sentiment analysis in identifying positive and negative reviews and the importance of summarizing such text to facilitate comprehension and convey essential findings to readers. The proposed work focuses on summarizing all positive and negative reviews to enhance product quality, and the performance of the generated summaries is measured using ROUGE scores. The results show promising outcomes for the developed methods in summarizing user-generated content.

Topic-based Multi-document Summarization Using Non-negative Matrix Factorization and K-means (비음수 행렬 분해와 K-means를 이용한 주제기반의 다중문서요약)

  • Park, Sun;Lee, Ju-Hong
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.4
    • /
    • pp.255-264
    • /
    • 2008
  • This paper proposes a novel method using K-means and Non-negative matrix factorization (NMF) for topic -based multi-document summarization. NMF decomposes weighted term by sentence matrix into two sparse non-negative matrices: semantic feature matrix and semantic variable matrix. Obtained semantic features are comprehensible intuitively. Weighted similarity between topic and semantic features can prevent meaningless sentences that are similar to a topic from being selected. K-means clustering removes noises from sentences so that biased semantics of documents are not reflected to summaries. Besides, coherence of document summaries can be enhanced by arranging selected sentences in the order of their ranks. The experimental results show that the proposed method achieves better performance than other methods.

CONFIDENCE CURVES FOR A FUNCTION OF PARAMETERS IN NONLINEAR REGRESSION

  • Kahng, Myung-Wook
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • We consider obtaining graphical summaries of uncertainty in estimates of parameters in nonlinear models. A nonlinear constrained optimization algorithm is developed for likelihood based confidence intervals for the functions of parameters in the model The results are applied to the problem of finding significance levels in nonlinear models.

Document Summarization using Weighting based on Cloud (클라우드 기반의 가중치에 의한 문서요약)

  • Park, Sun;Kim, Chul Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.305-306
    • /
    • 2013
  • In this paper, we proposes a document summarization method using the weighting based on cloud. The proposed method can minimize the user intervention to use the relevance feedback. It also can improve the quality of document summaries because the inherent semantic of the sentence set are well reflected by term weighting derived from semantic feature using nonnegative matrix factorizaitno based cloud.

  • PDF

Document Summarization using Weighting based on Cloud (클라우드 기반의 가중치에 의한 문서요약)

  • Park, Sun;Kim, Chul Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.968-969
    • /
    • 2013
  • In this paper, we proposes a document summarization method using the weighting based on cloud. The proposed method can minimize the user intervention to use the relevance feedback. It also can improve the quality of document summaries because the inherent semantic of the sentence set are well reflected by term weighting derived from semantic feature using nonnegative matrix factorizaitno based cloud.

  • PDF

Query-based Document Summarization using Pseudo Relevance Feedback based on Semantic Features and WordNet (의미특징과 워드넷 기반의 의사 연관 피드백을 사용한 질의기반 문서요약)

  • Kim, Chul-Won;Park, Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1517-1524
    • /
    • 2011
  • In this paper, a new document summarization method, which uses the semantic features and the pseudo relevance feedback (PRF) by using WordNet, is introduced to extract meaningful sentences relevant to a user query. The proposed method can improve the quality of document summaries because the inherent semantic of the documents are well reflected by the semantic feature from NMF. In addition, it uses the PRF by the semantic features and WordNet to reduce the semantic gap between the high level user's requirement and the low level vector representation. The experimental results demonstrate that the proposed method achieves better performance that the other methods.

Document Summarization using Pseudo Relevance Feedback and Term Weighting (의사연관피드백과 용어 가중치에 의한 문서요약)

  • Kim, Chul-Won;Park, Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.533-540
    • /
    • 2012
  • In this paper, we propose a document summarization method using the pseudo relevance feedback and the term weighting based on semantic features. The proposed method can minimize the user intervention to use the pseudo relevance feedback. It also can improve the quality of document summaries because the inherent semantic of the sentence set are well reflected by term weighting derived from semantic feature. In addition, it uses the semantic feature of term weighting and the expanded query to reduce the semantic gap between the user's requirement and the result of proposed method. The experimental results demonstrate that the proposed method achieves better performant than other methods without term weighting.

Subject-Balanced Intelligent Text Summarization Scheme (주제 균형 지능형 텍스트 요약 기법)

  • Yun, Yeoil;Ko, Eunjung;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.141-166
    • /
    • 2019
  • Recently, channels like social media and SNS create enormous amount of data. In all kinds of data, portions of unstructured data which represented as text data has increased geometrically. But there are some difficulties to check all text data, so it is important to access those data rapidly and grasp key points of text. Due to needs of efficient understanding, many studies about text summarization for handling and using tremendous amounts of text data have been proposed. Especially, a lot of summarization methods using machine learning and artificial intelligence algorithms have been proposed lately to generate summary objectively and effectively which called "automatic summarization". However almost text summarization methods proposed up to date construct summary focused on frequency of contents in original documents. Those summaries have a limitation for contain small-weight subjects that mentioned less in original text. If summaries include contents with only major subject, bias occurs and it causes loss of information so that it is hard to ascertain every subject documents have. To avoid those bias, it is possible to summarize in point of balance between topics document have so all subject in document can be ascertained, but still unbalance of distribution between those subjects remains. To retain balance of subjects in summary, it is necessary to consider proportion of every subject documents originally have and also allocate the portion of subjects equally so that even sentences of minor subjects can be included in summary sufficiently. In this study, we propose "subject-balanced" text summarization method that procure balance between all subjects and minimize omission of low-frequency subjects. For subject-balanced summary, we use two concept of summary evaluation metrics "completeness" and "succinctness". Completeness is the feature that summary should include contents of original documents fully and succinctness means summary has minimum duplication with contents in itself. Proposed method has 3-phases for summarization. First phase is constructing subject term dictionaries. Topic modeling is used for calculating topic-term weight which indicates degrees that each terms are related to each topic. From derived weight, it is possible to figure out highly related terms for every topic and subjects of documents can be found from various topic composed similar meaning terms. And then, few terms are selected which represent subject well. In this method, it is called "seed terms". However, those terms are too small to explain each subject enough, so sufficient similar terms with seed terms are needed for well-constructed subject dictionary. Word2Vec is used for word expansion, finds similar terms with seed terms. Word vectors are created after Word2Vec modeling, and from those vectors, similarity between all terms can be derived by using cosine-similarity. Higher cosine similarity between two terms calculated, higher relationship between two terms defined. So terms that have high similarity values with seed terms for each subjects are selected and filtering those expanded terms subject dictionary is finally constructed. Next phase is allocating subjects to every sentences which original documents have. To grasp contents of all sentences first, frequency analysis is conducted with specific terms that subject dictionaries compose. TF-IDF weight of each subjects are calculated after frequency analysis, and it is possible to figure out how much sentences are explaining about each subjects. However, TF-IDF weight has limitation that the weight can be increased infinitely, so by normalizing TF-IDF weights for every subject sentences have, all values are changed to 0 to 1 values. Then allocating subject for every sentences with maximum TF-IDF weight between all subjects, sentence group are constructed for each subjects finally. Last phase is summary generation parts. Sen2Vec is used to figure out similarity between subject-sentences, and similarity matrix can be formed. By repetitive sentences selecting, it is possible to generate summary that include contents of original documents fully and minimize duplication in summary itself. For evaluation of proposed method, 50,000 reviews of TripAdvisor are used for constructing subject dictionaries and 23,087 reviews are used for generating summary. Also comparison between proposed method summary and frequency-based summary is performed and as a result, it is verified that summary from proposed method can retain balance of all subject more which documents originally have.