• Title/Summary/Keyword: Matlab model

Search Result 1,030, Processing Time 0.023 seconds

Design and Implementation of Modified Current Source Based Hybrid DC - DC Converters for Electric Vehicle Applications

  • Selvaganapathi, S.;Senthilkumar, A.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.57-68
    • /
    • 2016
  • In this study, we present the modern hybrid system based power generation for electric vehicle applications. We describe the hybrid structure of modified current source based DC - DC converters used to extract the maximum power from Photovoltaic (PV) and Fuel Cell system. Due to reduced dc-link capacitor requirement and higher reliability, the current source inverters (CSI) better compared to the voltage source based inverter. The novel control strategy includes Distributed Maximum Power Point Tracking (DMPPT) for photovoltaic (PV) and fuel cell power generation system. The proposed DC - DC converters have been analyzed in both buck and boost mode of operation under duty cycle 0.5>d, 0.5<d<1 and 0.5<d for capable electric vehicle applications. The proposed topology benefits include one common DC-AC inverter that interposes the generated power to supply the charge for the sharing of load in a system of hybrid supply with photovoltaic panels and fuel cell PEM. An improved control of Direct Torque and Flux Control (DTFC) based induction motor fed by current source converters for electric vehicle.In order to achieve better performance in terms of speed, power and miles per gallon for the expert, to accepting high regenerative braking current as well as persistent high dynamics driving performance is required. A simulation model for the hybrid power generation system based electric vehicle has been developed by using MATLAB/Simulink. The Direct Torque and Flux Control (DTFC) is planned using Xilinx ISE software tool in addition to a Modelsim 6.3 software tool that is used for simulation purposes. The FPGA based pulse generation is used to control the induction motor for electric vehicle applications. FPGA has been implemented, in order to verify the minimal error between the simulation results of MATLAB/Simulink and experimental results.

Reliability Analysis for Train Control System by Software Fault Tolerance Techniques (소프트웨어 결함허용 기법에 의한 열차제어시스템 신뢰도 분석)

  • Suh, Seog-Chul;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.1043-1048
    • /
    • 2009
  • PES (Programmable Electronic System) is used by software development for the train control system. PES has been widely used in real world and consists of hardware, firmware and application software. The PES are easily apply to many applications because its implementation has high flexibility. Many safety critical functions are realized through software in safety critical system. Normally, it is difficult to detect failures for PES system because the PES is too sophisticated to identify sources of the failure. So, the reliability analysis is needed by using software fault tolerance techniques. Currently, there are the recovery block, distributed recovery block, N-version programming, N self-checking programming in fault tolerance techniques. In this paper, the models of recovery block and N-version programming in software fault tolerance techniques are suggested by using the Markov model. Also, the reliability in the train control system is analyzed through changing time. The fault occupancy rates of the program, adjustment test and voter are stationary. So, the relation between time and reliability is presented by using Matlab program. In the result of reliability, the reliability of recovery block is more high than N-version programming in case of the same number of substitution block.

Development of a Air-to-Air Missile Simulation Program for the Lethality Evaluation (치사율 평가를 위한 공대공 미사일 모의 발사 프로그램 개발)

  • Sung, Jae-Min;Kim, Byoung-Soo;Shin, Bo-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.288-293
    • /
    • 2010
  • This paper presents to calculate the lethality of missile for the simulation test program and to verify the simulation results. In order to calculate a reliable lethality we need may data and experiments of fuse and warhead, but in reality it is hard to perform a task. Therefore, this paper obtained from the reference paper to analyze the lethality data for the calculation of the lethality. We form the 6 DOF simulation model using the MATLAB/SIMULINK. And formed the autopilot algorithm using the vertical and horizontal acceleration feedback and PNG (Proportional Navigation Guidance) command be used to the guidance algorithm. Finally, we evaluate the results about three cases, front launch, side launch and rear launch to simulate the simulation program, and the target is designed to have a constant speed and direction.

Characteristic of Cabin Temperature According to Thermal Load Condition of Heat Pump for Electric Vehicle (전기자동차용 히트펌프의 열 부하 조건에 따른 캐빈온도 특성)

  • Park, Ji Soo;Han, Jae Young;Kim, Sung-Soo;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • The Positive Temperature Coefficient (PTC) is used for cabin air heating of a battery electric vehicle, which is different from conventional vehicles. Since the PTC heater consumes a large quantity of power in a parasitic manner, many valuable studies have been reported in the field of alternative heat pumps. In this study, a model for an R134a heat pump taking into account the thermal environment of the cabin was developed for a MATLAB/SIMULINK(R) platform. Component and cabin models are validated with reference values. Results show that the heat pump is more competitive for parasitic power consumption over all ambient temperature conditions. Additionally, the method of waste heat recovery to overcome disadvantages when temperatures are below zero is applied to efficiently operate the heat pump.

Nano-Aperture Grating Structure Design in Ultra-High Frequency Range Based on the GA and the ON/OFF Method (GA 및 ON/OFF 방법 기반의 초고주파수 영역의 나노개구 격자의 구조설계)

  • Song, Sung-Moon;Yoo, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.739-744
    • /
    • 2012
  • The genetic algorithm (GA) is regarded as one of the best ways for determining a global solution. Because it does not require calculating the design sensitivity differently from the ordinary gradient-based method, it is appropriate for the design problem in the ultra-high frequency range; the ordinary gradient-based method has difficulty in calculating the sensitivity in this range. This paper deals with nano-aperture grating topology optimization based on the GA and the ON/OFF method. The objective of this study is to maximize the transmittance in the measuring area. The simulation and optimization processes are carried out by using the commercial package COMSOL associated with Matlab programming. The final optimal design gives around 21% performance improvement, compared with the initial model.

Stabilization Design of Large Rotating Stand Using Sliding Mode Control (슬라이딩모드 제어 기법을 이용한 대형 구동기 안정화 설계)

  • Kim, Sungryong;Park, Dongmyung;Moon, Wooyong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1045-1052
    • /
    • 2015
  • In this paper, a stabilized control algorithm for the large rotating stand of a long-range surveillance radar (LRSR) system is introduced. The stabilized control algorithm for this large rotating stand system was designed using mathematical plant modeling. The LRSR system is located on high ground and has a wide surface, making it susceptible to the effects of wind, which increases the bearing friction and reduces the stability of the rotating stand. The disturbance caused by the wind was analyzed using computational fluid dynamics (CFD) in this study. The results of the CFD analysis were used to construct a control algorithm for the disturbance . The performance of the proposed control algorithm was demonstrated experimentally and through simulations. The plant model and the control algorithm were constructed in Matlab/Simulink.

Performance Improvement of Stratified Thermal Storage Tank Using Heat Insulator (단열층 사용을 통한 성층 축열조 성능개선)

  • Lim, Se Hwa;Lee, Tae Gyu;Shin, Seungwon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.1
    • /
    • pp.65-72
    • /
    • 2014
  • The purpose of this study is to design a heat insulator for reducing available energy loss in stratified thermal storage tank. Heat insulator is operated by buoyancy effect from density difference between hot and cold water without extra equipment. Analysis model using the Matlab Simulink was developed to estimate the internal temperature distribution in thermal storage tank and also used to select proper material and thickness of the heat insulator. Operational feasibility was confirmed through reduced scale experiment. As a result, heat insulator can effectively delay the formation of thermal boundary layer between hot and cold water. In reduced scale experiment, heat insulator can preserve additional 1540J of available energy. When applied to the real thermal storage tank, increase of 6% thermal storage efficiency can be expected.

Design of Near-Minimum Time Path Planning Algorithm for Autonomous Driving (무인 자율 주행을 위한 최단 시간 경로계획 알고리즘 설계)

  • Kim, Dongwook;Kim, Hakgu;Yi, Kyongsu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.609-617
    • /
    • 2013
  • This paper presents a near-minimum time path planning algorithm for autonomous driving. The problem of near-minimum time path planning is an optimization problem in which it is necessary to take into account not only the geometry of the circuit but also the dynamics of the vehicle. The path planning algorithm consists of a candidate path generation and a velocity optimization algorithm. The candidate path generation algorithm calculates the compromises between the shortest path and the path that allows the highest speeds to be achieved. The velocity optimization algorithm calculates the lap time of each candidate considering the vehicle driving performance and tire friction limit. By using the calculated path and velocity of each candidate, we calculate the lap times and search for a near-minimum time path. The proposed algorithm was evaluated via computer simulation using CarSim and Matlab/Simulink.

FPGA Implementation for Real Time Sobel Edge Detector Block Using 3-Line Buffers (3-Line 버퍼를 사용한 실시간 Sobel 윤곽선 추출 블록 FPGA 구현)

  • Park, Chan-Su;Kim, Hi-Seok
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.10-17
    • /
    • 2015
  • In this Paper, an efficient method of FPGA based design and implementation of Sobel Edge detector block using 3-Line buffers is presented. The FPGA provides the proper and sufficient hardware for image processing algorithms with flexibility to support Sobel edge detection algorithm. A pipe-lined method is used to implement the edge detector. The proposed Sobel edge detection operator is an model using of Finite State Machine(FSM) which executes a matrix mask operation to determine the level of edge intensity through different of pixels on an image. This approach is useful to improve the system performance by taking advantage of efficient look up tables, flip-flop resources on target device. The proposed Sobel detector using 3-line buffers is synthesized with Xilinx ISE 14.2 and implemented on Virtex II xc2vp-30-7-FF896 FPGA device. Using matlab, we show better PSNR performance of proposed design in terms of 3-Line buffers utilization.

Development of Program for Designing Barrel Cam of Machine Making Paper Cups (종이컵 성형기용 배럴 캠 설계 프로그램 개발)

  • Kim, Wook-Hyeon;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.433-438
    • /
    • 2011
  • A machine that makes paper cups has many parts, including a barrel cam, an index, and a turret. When the barrel cam, which is the main operating part of the machine, rotates, it pushes the roller fixed on the index, and paper cups are formed as the turret connected to the index rotates. Therefore, the performance of the machine is affected by the barrel cam. In this study, the program for designing barrel cam, which creates the profile of the cam is developed using MATLAB. This profile is used to develop a 3D CAD model by using a 3D CAD program. Dynamic models containing the barrel cam are created on the basis of the profile and 3D laser scan of the barrel cam. Further, the rotation angle of the index in the machine is measured using a high-speed camera. The rotation angles of the dynamics models are compared to verify the effectiveness of the program.