DOI QR코드

DOI QR Code

Stabilization Design of Large Rotating Stand Using Sliding Mode Control

슬라이딩모드 제어 기법을 이용한 대형 구동기 안정화 설계

  • 김성룡 (한화탈레스 메카트로닉스그룹) ;
  • 박동명 (한화탈레스 메카트로닉스그룹) ;
  • 문우용 (한화탈레스 메카트로닉스그룹)
  • Received : 2015.02.11
  • Accepted : 2015.08.10
  • Published : 2015.10.01

Abstract

In this paper, a stabilized control algorithm for the large rotating stand of a long-range surveillance radar (LRSR) system is introduced. The stabilized control algorithm for this large rotating stand system was designed using mathematical plant modeling. The LRSR system is located on high ground and has a wide surface, making it susceptible to the effects of wind, which increases the bearing friction and reduces the stability of the rotating stand. The disturbance caused by the wind was analyzed using computational fluid dynamics (CFD) in this study. The results of the CFD analysis were used to construct a control algorithm for the disturbance . The performance of the proposed control algorithm was demonstrated experimentally and through simulations. The plant model and the control algorithm were constructed in Matlab/Simulink.

본 논문은 장거리 탐지 레이더(LRSR;Long Range Surveillance Radar) 회전 구동 안정화에 관한 내용으로, 외란에 강인한 제어기 설계에 관한 것이다. 외란에 강인한 제어기 설계를 위하여 시스템 동특성과 외란 요소를 분석하고 그에 대한 수학적 모델링을 수행한다. 탐지레이더는 바람이 강한 높은 지대에 설치되는 특성과 넓은 안테나면을 갖는 형상적인 특성을 감안하였을 때 주 외란 요소는 풍속을 들 수 있다. 풍속은 베어링의 마찰을 증가시키는 요소로 작용하고 이는 안정화 성능을 저해 한다. 풍속이 탐지레이더에 미치는 영향은 전산유체역학(CFD;Computational Fluid Dynamics) 해석 결과를 이용한다. 전산유체역학 해석 결과를 제어알고리즘의 외란 입력으로 구성하여 제어기법에 대한 안정화 성능을 시뮬레이션과 실험을 통하여 기술한다. 플랜트 모델링 및 제어기는 Matlab / Simulink 를 이용하여 구성한다.

Keywords

References

  1. Gawronskil, "Three Models of Wind-Gust Disturbance for the Analysis of Antenna Pointing Accuracy" Mechanism and Machine Theory, Vol. 20, No. 5, pp. 449-464. https://doi.org/10.1016/0094-114X(85)90049-7
  2. Lee, C.-W. and Kim, N.-I., 1999, "Model-Based Control System Design and Sliding Mode Control of Stewart Platform Manipulator," Trans. Korean Soc. Mech. Eng. A, 23(6), 903-911. https://doi.org/10.22634/KSME-A.1999.23.6.903
  3. Edwads, C. and Spurgeon, S. K., 1998, "Sliding Mode Control," Theory and Application, CRC press, 270 Madison Avenue New York, NY 10016, pp. 1-18
  4. Armstrong, B. and de Wit, C.C., 1995, " Friction Modeling and Compensation," The Control Handbook, CRC Press, 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487, pp. 1369-1382
  5. Haug, E. J., 1989, "Computer Aided Kinematics And Dynamics of Mechanical Systems" Volume1, Allyn and Bacon A division of Simon & Schuster, 160 Gould Street Needhan Heightrs, Massachuetts 02194, pp. 20-24
  6. Park, S.-H., Lee, J.-M. and Kim J.-S., 2009. "A Decentralized Brake System for Railway Rolling Stocks Using the Adaptive Sliding Mode Control Scheme," Trans. Korean Soc. Mech. Eng. A, 33(10), 1005-1013. https://doi.org/10.3795/KSME-A.2009.33.10.1005
  7. Chen, M. and Chen, W.-H., 2010, "Sliding Mode Control for a Class of Uncertain Nonlinear System Based on Disturbance.," International journal of adaptive control and signal processing, Volume24, Issue1, pp. 51-64. https://doi.org/10.1002/acs.1110
  8. Kaydon corporation, 2000, " Catalog 300k, REALISLIM Ball and Roller Bearings," Kaydon Bearings, 2860 Mc Cracken St, Norton Shores, MI 49441, USA, pp. 81-85.
  9. Harris, T. A., 1991, "Rollin Bearing Anlaysis," 3rd Edition, A Wiley-Interscience Publication, 111 River Street Hoboken, NJ 07030-5774, pp. 445-458.
  10. Lim, C. W. and Seo, K. Y., 2010, "Comparison of Response Properties Determined in Two Torque Control Methods for a 2.75-MW Wind Turbine Under Turbulence Wind Speed," Trans. Korean Soc. Mech. Eng. A, 34(12), 1885-1891. https://doi.org/10.3795/KSME-A.2010.34.12.1885