• Title/Summary/Keyword: Matlab model

Search Result 1,030, Processing Time 0.026 seconds

Convolutional Neural Network Based Plant Leaf Disease Detection

  • K. Anitha;M.Srinivasa Rao
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.107-112
    • /
    • 2024
  • Plant leaf diseases and destructive insects are major challenges that affect the agriculture production of the country. Accurate and fast prediction of leaf diseases in crops could help to build-up a suitable treatment technique while considerably reducing the economic and crop losses. In this paper, Convolutional Neural Network based model is proposed to detect leaf diseases of a plant in an efficient manner. Convolutional Neural Network (CNN) is the key technique in Deep learning mainly used for object identification. This model includes an image classifier which is built using machine learning concepts. Tensor Flow runs in the backend and Python programming is used in this model. Previous methods are based on various image processing techniques which are implemented in MATLAB. These methods lack the flexibility of providing good level of accuracy. The proposed system can effectively identify different types of diseases with its ability to deal with complex scenarios from a plant's area. Predictor model is used to precise the disease and showcase the accurate problem which helps in enhancing the noble employment of the farmers. Experimental results indicate that an accuracy of around 93% can be achieved using this model on a prepared Data Set.

Thrust Simulation and Experiments for Underwater Thrusters (수중추진기의 추진력 시뮬레이션 및 실험)

  • Ahn, Yong-Seok;Baek, Woon-Kyung
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.51-59
    • /
    • 2017
  • In the early design stage of underwater vehicles, it is important to estimate the vehicle's underwater motion performance. The key design elements for the motion are propellers, battery power, and underwater resistance of the vehicle. Small thrusters with motor and propeller are usually used for the UUV(unmanned underwater vehicles). In this study, a multiphysics thruster model combining electro-mechanical and hydrodynamics characteristics was proposed to estimate the thruster performance. To show the applicability of the mathematical model, an sample thruster was used for the derive the unknown parameters of thruster. Hydrodynamic parameters were calculated for a 3D geometry model of the propeller by ANSYS/CFX program. Finally, Matlab/simulink program was used for the numerical simulation to predict the thruster performance from the given voltage/current input to the motor. Also, proved validity of simulation model by experiment test. Test were done by 2 mode(middle/high speed, reverse). The thruster performance curves obtained from this simulation were confirmed to be similar with experiment results.

Electrical Modeling of Lithium-Polymer Battery (리튬폴리머 전지의 전기적 모델링)

  • Im, Jae-Kwan;Lim, Deok-Young;Windarko, Novie Ayub;Choi, Jae-Ho;Chung, Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.199-207
    • /
    • 2011
  • Electrical modeling of lithium-polymer battery is very important for electric energy supply system. In this paper, electric equivalent circuit of lithium-polymer battery is proposed to simulate its dynamic characteristics. Maccor 8500 charge/discharge system is used to obtain the experimental data of lithium-polymer battery. Model parameters are calculated by using Matlab. This paper defines a R-C model for charging/discharging of battery and polynomial functions are used for OCV (Open Circuit Voltage) modeling. The proposed model is simulated with PSiM and then compared the simulation results with the experimental results to verify the validity of the proposed model.

An Optimal Decision Model for Capacity and Inclining Angle of Residential Photovoltaic Systems (주택용 태양광발전시스템의 적정 용량 및 설치각 선정을 위한 최적화 모델 연구)

  • Jeon, Jeong-Pyo;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1046-1052
    • /
    • 2010
  • In residential house, photovoltaic (PV) system among various alternatives in renewable energy system is the most efficient and feasible solution for reducing energy consumption and electricity cost. However, relatively high initial cost make people reluctant to install PV system in their houses. Therefore, in the initial state for PV system installation in the house, it is very important to decide proper capacity of the PV system considering the expected energy usage and solar energy supplying condition with the house. This paper proposes a novel optimization model for deciding appropriate capacity of the PV system for residential house. The objective function of the model is to minimize the annual cost including electricity bill, operation and maintenance cost, and annual fixed cost calculated from the initial installation cost based on capital recovery factor (CRF). The model also shows the optimal inclining angle of PV panels of the system. In this paper, we estimate the PV output using PVWATTS (PV simulator of Office of Energy Efficiency and Renewable Energy) and find optimal solutions by Sequential Quadratic Programming (SQP) method using MATLAB software. The proposed approach is finally applied to a residential model house in Gangneung, Gangwon-Do and verified its feasibility for adopting to PV system design for residential houses.

A Study on the Optimum Velocity of a Four Wheel Steering Autonomous Robot (4륜조향 자율주행로봇의 최적속도에 관한 연구)

  • Kim, Mi-Ok;Lee, Jung-Han;Yoo, Wan-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.86-92
    • /
    • 2009
  • A driver-vehicle model means the integrated dynamic model that is able to estimate the steering wheel angle from the driver's desired path based on the dynamic characteristics of the driver and vehicle. Autonomous driving robot for factory automation has individual four-wheels which are driven by electronic motors. In this paper, the dynamic characteristics of several four-wheel steering systems with the simultaneously steerable front and rear wheels are investigated and compared by means of the driver-vehicle model. A diver-vehicle model is proposed by using the PID control to velocity and trajectory of control autonomous driving robot. To determine the optimum speed of a autonomous driving robot, steady-state circle simulation is carried out with the ADAMS program and MATLAB control model.

Design of Linear Model Following Controller using the Plant Output (플랜트 출력을 이용한 선형모델 추종기 설계)

  • Cho, Nae-Soo;Youn, Kyung-Sup;Choi, Youn-Ho;Kwon, Woo-Hyen
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.661-666
    • /
    • 2009
  • The linear model following controller(LMFC) scheme controls a plant based on the output of a reference model, thereby replacing a PI controller that has better time response characteristics, which are irrelevant to the structural perturbation of a plant. However, the main weakness of the LMFC scheme is a slow response time to load changes. Thus, to solve this problem, a robust linear model following controller(RMFC) was developed that is robust in load changes. However, when compared with the LMFC scheme, the RMFC scheme has a weaker performance in the case of system parameter changes. Therefore, this paper presents a new LMFC scheme, where the controller is designed based on the output of a plant rather than the output of a model, as in the case of the conventional LMFC scheme. As a result, in the case of load changes, the response characteristics of the proposed scheme are slower than those of the RMFC scheme, yet laster than those of the conventional LMFC scheme, however, for parameter changes, the proposed scheme has a superior performance over the RMFC scheme. The usefulness of the proposed LMFC scheme is verified through a comparison using MATLAB/SIMULINK.

Three Dimensional Target Volume Reconstruction from Multiple Projection Images

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Lee, Hyoung-Koo;Choe, Bo-Young
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.439-441
    • /
    • 2002
  • The aim of this study is to reconstruct the 3D target volume from multiple projection images. It was assumed that we were already aware of the target position exactly, and all processes were performed in Target Coordinates whose origin was the center of the target. We used six projections: two projections were used to make a Reconstruction Box and four projections were for image acquisition. Reconstruction Box was made up of voxels of 3D matrix. Projection images were transformed into 3D volume in this virtual box using geometrical based back-projection method. Algorithm was applied to an ellipsoid model and horse-shoe shaped model. Projection images were created using C program language by geometrical method and reconstruction was also accomplished using C program language and Matlab(The Mathwork Inc., USA). For ellipsoid model, reconstructed volume was slightly overestimated but target shape and position was proved to be correct. For horse-shoe shaped model, reconstructed volume was somewhat different from original target model but there was a considerable improvement in target volume determination.

  • PDF

Modeling and control of a flexible continuum module actuated by embedded shape memory alloys

  • Hadi, Alireza;Akbari, Hossein
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.663-682
    • /
    • 2016
  • Continuum manipulators as a kind of mechanical arms are useful tools in special robotic applications. In medical applications, like colonoscopy, a maneuverable thin and flexible manipulator is required. This research is focused on developing a basic module for such an application using shape memory alloys (SMA). In the structure of the module three wires of SMA are uniformly distributed and attached to the circumference of a flexible tube. By activating wires, individually or together, different rotation regimes are provided. SMA model is used based on Brinson work. The SMA model is combined to model of flexible tube to provide a composite model of the module. Simulating the model in Matlab provided a platform to be used to develop controller. Complex and nonlinear behavior of SMA make the control problem hard especially when a few SMA actuators are active simultaneously. In this paper, position control of the two degree of freedom module is under focus. An experimental control strategy is developed to regulate a desired position in the module. The simulation results present a reasonable performance of the controller. Moreover, the results are verified through experiments and show that the continuum module of this paper would be used in real modular manipulators.

ANN based on forgetting factor for online model updating in substructure pseudo-dynamic hybrid simulation

  • Wang, Yan Hua;Lv, Jing;Wu, Jing;Wang, Cheng
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.63-75
    • /
    • 2020
  • Substructure pseudo-dynamic hybrid simulation (SPDHS) combining the advantages of physical experiments and numerical simulation has become an important testing method for evaluating the dynamic responses of structures. Various parameter identification methods have been proposed for online model updating. However, if there is large model gap between the assumed numerical models and the real models, the parameter identification methods will cause large prediction errors. This study presents an ANN (artificial neural network) method based on forgetting factor. During the SPDHS of model updating, a dynamic sample window is formed in each loading step with forgetting factor to keep balance between the new samples and historical ones. The effectiveness and anti-noise ability of this method are evaluated by numerical analysis of a six-story frame structure with BRBs (Buckling Restrained Brace). One BRB is simulated in OpenFresco as the experimental substructure, while the rest is modeled in MATLAB. The results show that ANN is able to present more hysteresis behaviors that do not exist in the initial assumed numerical models. It is demonstrated that the proposed method has good adaptability and prediction accuracy of restoring force even under different loading histories.

Development of Operating Mechanism of a Pretensioner using Internal Gear Pairs (내접 기어를 이용한 프리텐셔너의 구동 메커니즘 개발)

  • Jung, Sung-Pil;Park, Tae-Won;Kim, Wook-Hyeon;Hong, Yo-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.89-94
    • /
    • 2010
  • The pretensioner is used to retract the belt webbing and tighten up any slack in the event of a crash. The retracting force of the pretensioner helps move the passenger into the optimum crash position in his or her seat. In this paper, the new concept of an operating mechanism of the pretensioning system is presented. The internal gear design program is developed using MATLAB. Two kinds of numerical analysis model are created. The first one, the rigid body dynamic model, is used to estimate the performance of several gear pairs. The initial performance of the new operating mechanism is analyzed and the best combination of the gear pairs is selected. The second one, the structural dynamic model, is used to calculate the deformation of the gear teeth. To decrease the deformation and interference of the teeth, the shape of the gear pairs is changed.