• Title/Summary/Keyword: Matlab model

Search Result 1,030, Processing Time 0.024 seconds

Dynamic Modeling and Analysis of a Friction Damper in Drum-type Washing Machine with a Magic Formula Model (Magic Formula 모델을 이용한 드럼세탁기용 마찰댐퍼의 동역학적 모델링과 해석)

  • Park, Jin-Hong;Lee, Jeong-Han;Yoo, Wan-Suk;Nho, Gyung-Hun;Chung, Bo-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.1034-1042
    • /
    • 2009
  • In this paper, the magic formula model was applied for a friction damper in a drum-type washing machine. To describe characteristics of the hysteretic damping force, Physical tests were first carried out to get experimental results using an MTS machine. Then, parameters for the magic formula model were determined from the experimental curves. The ADAMS and MATLAB programs were used for the multibody modeling of the damper and process for parameter identification. The model of drum-type washing machine was applied for a dynamic model of friction damper, in which the accuracy of the proposed damper model was verified.

Effects of the time delay on the stability of a virtual wall model with a first-order-hold method (시간지연에 의한 일차홀드 방식을 포함하는 가상벽 모델의 안정성 영향 분석)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.17-21
    • /
    • 2014
  • This paper presents the effects of the time delay on the stability of the haptic system that includes a virtual wall and a first-order-hold method. The model of a haptic system includes a haptic device model with a mass and a damper, a virtual wall model, a first-order-hold model and a time delay model. In this paper, the time delay is considered as the computational time delay that is assumed to be as much as the sampling time. As the time delay increases, the maximal available stiffness of a virtual wall model is reduced reversely. The relation among the time delay and the maximum available stiffness, the mass and the damper of the haptic device are analyzed using the MATLAB simulation.

A study on the Modeling for Rotors Control with Dynamics Analysis S/W (동역학 S/W와 연계한 회전체 제어의 모델링에 관한 연구)

  • Lee W.C.;Kim S.W.;Kim J.S.;Park H.O.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.906-909
    • /
    • 2005
  • This study provides the method to build the rotor system model using dynamic analysis software. also, it introduces the traditional methods of the rotor system modeling and informs the each merits and demerits. We will make up the flexible system of rotor system model with ADAMS, multi-body dynamics S/W, in order to develop dynamics model and get the response of plant model near to real model through connection the SIMULINK of MATLAB. We will develop the computing dynamics-controling model possible controlled simulation similar to a real model with controlling the plant model.

  • PDF

The Improvement of maintainability evaluation method at system level using system component information and fuzzy technique (시스템의 구성품 정보와 퍼지 기법을 활용한 시스템 수준 정비도 평가 방법의 개선)

  • Yoo, Yeon-Yong;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.100-109
    • /
    • 2019
  • Maintainability indicates the extent to which maintenance can be done easily and quickly. The consideration of maintainability is crucial to reduce the operation and support costs of weapon systems, but if the maintainability is evaluated after the prototype production is done and necessitates design changes, it may increase the cost and delay the schedule. The evaluation should verify whether maintenance work can be performed, and support the designers in developing a design to improve maintainability. In previous studies, the maintainability index was calculated using the graph theory at the early design phase, but evaluation accuracy appeared to be limited. Analyzing the methods of evaluating the maintainability using fuzzy logic and 3D modeling indicate that the design of a system with good maintainability should be done in an integrated manner during the whole system life cycle. This paper proposes a method to evaluate maintainability using SysML-based modeling and simulation technique and fuzzy logic. The physical design structure with maintainability attributes was modeled using SysML 'bdd' diagram, and the maintainability was represented by an AHP matrix for maintainability attributes. We then calculated the maintainability using AHP-based weighting calculation and fuzzy logic through the use of SysML 'par' diagram that incorporated MATLAB. The proposed maintainability model can be managed efficiently and consistently, and the state of system design and maintainability can be analyzed quantitatively, thereby improving design by early identifying the items with low maintainability.

HILS Implementation and Control Characteristics Analysis for Motor Drive System by using RT-Lab (RT-Lab을 이용한 Motor구동시스템의 HILS 구현 및 제어특성 분석)

  • Oh, Hyoung-Lok;Jeong, Yu-Seok;Lee, In-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.12-13
    • /
    • 2011
  • 본 논문에서는 동기전동기의 제어기 Model, 모터 Model, 실제 모터를 시뮬레이션 및 구동하기 위해서 RT-Lab을 이용하여 HILS를 구현하였다. 제어기 Model과 모터 Model은 MATLAB/Simulink를 이용하여 구현하였다. 모터 Model과 실제모터의 동작을 통해 제어기의 성능을 검증하였다. Motor Model은 실제모터와 선택적으로 동작시켜 실제모터와 유사하게 만들 수 있음을 확인하였다. 모든 Model 및 PWM의 동작 주기는 20kHz로 동작하며, 이를 검증을 하기 위해 400[W] 표면부착형 동기모터 다이나모 장치와 3상 모터 드라이버를 제작하여 성능을 확인하였다.

  • PDF

Dynamic Modeling of Two Cooperating Flexible Manipulators

  • Kim, Jin-Soo;Uchiyama, Masaru
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.188-196
    • /
    • 2000
  • In this paper, our aim is to develop a model for two cooperating flexible manipulators handling a rigid object by using lumped parameters. This model is in turn analyzed on MATLAB. In order to validate the model, a precise simulation model is developed using $ADAMS^{TM}$ (Automatic Dynamic Analysis of Mechanical System). Moreover, to clarify the discussion, the motions of a dual-arm experimental flexible manipulator are considered. Using the developed model, we control a robotic system with a symmetric hybrid position/force control scheme. Finally, experiments and simulations are performed, and a comparison of simulation results with experimental results is given to a rerify the validity of our model.

  • PDF

A Study on Ultrasonic Testing Simulation using the Multi-Gaussian Beam Model (다중-가우시안 빔 모델을 이용한 초음파 탐상 시험 시뮬레이션에 관한 연구)

  • Song, Sung-Jin;Kim, Hak-Joon
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.553-560
    • /
    • 2001
  • Recently, ultrasonic testing simulation has becomes very important in the field of nondestructive evaluation due to its unique capability of providing testing signals without real inspection. The ultrasonic testing simulation requires three elementary models including the transducer beam radiation model, the flaw scattering model, and the reception model. In the present work, we briefly describe an approach to develop the ultrasonic testing model together with its elementary models with the multi-gaussian beam model. Based on this approach, we developed ultrasonic testing simulation program with MATLAB. The performance of the developed program is demonstrated by the predicting of ultrasonic signals from two types of flaws, circulars crack and spheres.

  • PDF

Design of LFT-Based T-S Fuzzy Controller for Model-Following using LMIs (선형 행렬부등식과 분해법을 이용한 퍼지제어기 설계)

  • 손홍엽;이희진;조영완;김은태;박민용
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.123-128
    • /
    • 1998
  • This paper proposes design of LFT-based fuzzy controllers for model-following, which are better than the previous input-output linearization controllers, which are not able to follow the model system states and which do not guarantee the stability of all states. The method proposed in this paper provides a LFT-based Takagi-Sugeno(T-S) fuzzy controller with guaranteed stability and model-following via the following steps: First, using LFT(Linear Fractional Transformation) and T-S fuzzy model, controllers, are obtained. Next, error dynamics are obtained for model-following, and errors go to 0(zero). Finally, a T-s fuzzy controller that can stabilizxe the system with the requirement on the control input satisfied is obtained by solving the LMIs with the MATLAB LMI Control Toolbox and a model-following controller is obtained. Simulations are performed for the LFT-based T-S fuzzy controller designed by the proposed method, which show better performance than the results of input-out ut linearization controller.

  • PDF

Infrared Reflector Design using the Phase Field Method for Infrared Stealth Effect (적외선 피탐지를 위한 페이즈 필드법 기반의 적외선 반사층 설계)

  • Heo, Namjoon;Yoo, Jeonghoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.63-69
    • /
    • 2015
  • In this paper, infrared reflector design targeting infrared stealth effect is presented using structural optimization based on the phase field method. The analysis model was determined to accomplish the design that an incident infrared wave was reflected to a desired direction. The design process was to maximize the objective value at the measuring domain located in a target region and the design objective was set to the Poynting vector value which represents the energy flux. Optimization results were obtained according to the variation of some parameter values related to the phase field method. The model with a maximum objective value was selected as the final optimal model. The optimal model was modified to eliminate the gray scale using the cut-off method and it confirmed improved performance. In addition, to check the desired effect in the middle wave infrared range(MWIR), the analysis was performed by changing the input wavelength. The finite element analysis and optimization process were performed by using the commercial package COMSOL combined with the Matlab programming.

The Stabilization Loop Design for a Drone-Mounted Camera Gimbal System Using Intelligent-PID Controller (Intelligent-PID 제어기를 사용한 드론용 짐발 시스템의 안정화기 설계)

  • Byun, Gi-sig;Cho, Hyung-rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.1
    • /
    • pp.102-108
    • /
    • 2016
  • A flying drone generates vibrations in a great variety of frequencies, and it requires a gimbal system stabilization loop design in order to obtain clean and accurate image from the camera attached to the drone under this environment. The gimbal system for drone comprises the structure that supports the camera module and the stabilization loop which follows the precise angle while blocking the vibration from outside. This study developed a dynamic model for one axis for the stabilization loop design of a gimbal system for drones and applied classical PID controller and intelligent PID controller. The Stabilization loop design was developed by using MATLAB/Simulink and compared the performance of each controller through simulation. Especially, the intelligent PID controller can be designed almost without the dynamic model and it demonstrates that the angle can be followed without readjusting the parameters of the controller even when the characteristics of the model changes.