• Title/Summary/Keyword: Mathematical volume model

Search Result 206, Processing Time 0.028 seconds

Geometrical nonlinear bending characteristics of SWCNTRC doubly curved shell panels

  • Chavan, Shivaji G.;Lal, Achchhe
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.21-49
    • /
    • 2018
  • In this paper, geometric nonlinear bending characteristics of single wall carbon nanotube reinforced composite (SWCNTRC) doubly curved shell panels subjected to uniform transversely loadings are investigated. The nonlinear mathematical model is developed for doubly curved SWCNTRC shell panel on the basis of higher-order shear deformation theory and Green- Lagrange nonlinearity. All nonlinear higher order terms are included in the mathematical model. The effective material properties of SWCNTRC are estimated by using Eshelby-Mori-Tanaka micromechanical approach. The governing equation of the shell panel is obtained using the total potential energy principle and a Newton-Raphson iterative method is employed to compute the nonlinear displacement and stresses. The present results are compared with published literature. The effect of SWCNT volume fraction, width-to-thickness ratio, radius-to-width ratio (R/a), boundary condition, linear and nonlinear deflection, stresses and different types of shell geometry on nonlinear bending response is investigated.

Hemodynamic Analysis of Pig's Left Common Coronary Artery (LCCA) (II) (좌주간부 관상동맥(LCCA)에 관한 혈류역학적 분석 (II))

  • Moon, Su-Yeon;Jang, Ju-Hee;Park, Jung-Su;Shin, Seh-Yun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2043-2047
    • /
    • 2003
  • The distributions of blood pressure, blood flow, and blow volume in the left common artery (LCCA) were determined using the lumping parameter method. In order to develop a mathematical model for microcirculation in LCCA, the present study adopted preexisted set of measured morphological data on anatomy, mechanical properties of the coronary vessels, viscosity of blood, the basic laws of physics, and the appropriate boundary condition. Pressures and volumes of blood and flow resistance were expressed in terms of electrical voltages, current, and resistances, respectively, in the electrical analog model. The results of two mathematical models, symmetrical and asymmetrical models, were compared with other investigator's data. The present results were in good agreement with previous studies. It was found that the mean pressure profiles were similar in both models.

  • PDF

Attenuation of Pressure Fluctuations in Oil Hydraulic Pipeline with Bellows Type Accumulator (벨로스형 어큐뮬레이터의 압력 맥동 감쇠 특성)

  • Lee, I.Y.;Jung, Y.G.;Lee, S.J.
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.31-37
    • /
    • 2001
  • Pressure propagation and attenuation characteristics in a hydraulic pipeline with a bellows type accumulator was investigated by theoretical analyses and experiments. In the first stage of the study, equations to evaluate the amount of oil volume charged into the bellows together with nitrogen gas were proposed. In the next stage, the authors suggested a mathematical model based on transfer matrix method to describe the dynamic characteristics of the pipe element with a metal bellows type accumulator. Through comparisons and considerations of the experimental and the numerical data shown in frequency domain, the validity of the mathematical model was confirmed.

  • PDF

A Study on the Pressure Wave Propagation of Viscous Fluid Flow in a Pipe Line (관로에서 점성유체 유동의 압력파 전달에 관한 연구)

  • Kim, H.O.;Na, G.D.;Mo, Y.W.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.835-840
    • /
    • 2000
  • The objective of the present study is to investigate the characteristics of pressure wave propagation of viscous fluid flow in a circular pipe line. The goal of this study is to select the best frequency of each control factor of a circular pipe. We intend to approach a formalized mathematical model by a very exact and reasonable polynomial for fluid transmission lines. and we computed this mathematical model by computer. The results show that the oil viscosity decreased as the length of the circular pipe increases. and The energy of pressure wave propagation decreased as the pipe diameter decreases. The factor is that density of oil was changed resonant frequency. It has been found the viscosity characteristics is changed largely by length of hydraulic pipe and volume of cavity tank.

  • PDF

An algorithm for ultrasonic 3-dimensional reconstruction and volume estimation

  • Chin, Young-Min;Park, Sang-On;Woo, Kwang-Bang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.791-796
    • /
    • 1987
  • In this paper, an efficient algorithm to estimate the volume and surface area from ultrasonic imaging and a reconstruction algorithm to generate three-dimensional graphics are presented. The computing efficiency is Improved by using the graph theory and the algorithm to determine proper contour points is performed by applying several tolerances. The search for contour points is limited by the change in curvature in order to provide an efficient search of the minimum cost path. These algorithms are applied to a selected mathematical model of ellipsoid. The results show that the measured value of the volume and surface area for the tolerances of 1.0005, 1.001 and 1.002 approximate to the measured values for the tolerance of 1.000 resulting in small errors. The reconstructed 3-dimensional Images are sparse and consist of larger triangular tiles between two cross sections as tolerance is increased.

  • PDF

A Study on the Earthwork Volume Decision using the Spline Interpolation (Spline보간법을 이용한 토공량결정에 관한 연구)

  • 문두열
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.3
    • /
    • pp.305-313
    • /
    • 2000
  • The calculation of earthwork plays a major role in plan or design of many civil engineering projects, and thus it has become very important to advanced the accuracy of earthwork calculation. Current methods used for estimating the volume of pit excavation assumes that the ground profile between the grid points is linear(trapezoidal rule), or nonlinear(simpson's formulas). Generally speaking. the nonlinear profile formulas provide better accuracy than the linear profile formulas. However, all the formulas mentioned have a common drawback to ground profile, such as sharp corners or the grid points of any two straight lines. In this paper, mathematical model for a searching examination the drawbacks of the current methods is presented. Also, the presented formular, the spot height method, and chamber formulas, chen and lin method are compared with the volumes of the pits in these examples. As a result of this study, algorithm of a proposal area formula by spline method should provide a better accuracy than the spot height method, chamber formulas, chen and lin method. The mathematical model mentioned make an offer maximum accuracy in estimating the volume of a pit excavation.

  • PDF

Evaluation of Ventilation System Performance Using Indoor Air Quality Model (실내공기질 모델을 이용한 환기 시스템의 공기 정화 효율성 평가)

  • 최성우
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.4
    • /
    • pp.57-66
    • /
    • 1997
  • Successful energy conservation and good indcfor air quality (IAQ) are highly dependent on ventilation system. Air filtration is a primary solution of indoor air control strategies in terms of reducing energy consumption and improving ihdoor air quality. A conventional system with bypass filter, as it is called variable-air-volume/bypass filtration system (VAV/BPFS), is a variation of the conventional variable air volume (VAV) systems, which is designed to eliminate indoor air pollutant and to save energy. Bypass filtration system equipped with a high-efficiency particulate filter and carbon absorbent provides additional cleaned air into indoor environments and maintain good IAQ for human health. The objectives of this research were to compare the relative total decay rate of indoor air pollutant concentrations, and to develop a mathematical model simulating the performance of VAV/BPFS. All experiments were performed in chamber under the controlled conditions. The specific conclusions of this research are: 1. The VAV/BPFS system is more efficient than the VAV system in removing indoor air pollutant concentration. The total decay rates of aerosol, and total volatile organic compound (TVOC) for the VAV/BPFS system were higher than those of the conventional VAV system. 2. IAQ model predictions of each pollutant agree closely with the measured values. 3. According to IAQ model evaluation, reduction of outdoor supply air results in decreased dilution removal rate and on increased bypass filtration removal rate with the VAV/BPFS. As a results, we recommends the VAV/BPFS as an alternative to conventional VAV systems.

  • PDF

A Study on Models for the Analysis of Pressure Pulsation in a Swash-Plate Type Axial Piston Pump (사판식 액셜 피스톤 펌프에서의 압력맥동 해석모형에 관한 연구)

  • Shin, Jung-Hun;Kim, Hyoung-Eui;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.314-320
    • /
    • 2011
  • Although swash-plate type axial piston pumps have the merits of wide operating conditions and high efficiency, the characteristics of pressure pulsation and flow ripple which result in system noise generation are on-going problems. This research examined the analytic models of the dynamic oil pressure and flow characteristics in the pump. A new mathematical model which considered the pressure behaviors of each cylinder and discharge piping was developed to analyze the pump pressure and flow. This model also considered the leakages in the clearances which many researchers have ignored so far. Using the developed model, numerical calculations were implemented. The results showed that widely used simple model which considered only a single cylinder can not predict actual discrete flow dynamics and that fluid inertia effect has to be considered in the mathematical model. Several critical parameters were discussed such as port volume and discharge resistance on the assumption that the pipe length is not so long. The effect of leakages was studied on the final stage.

Tensile Behavior of Fiber/Particle Hybrid Metal Matrix Composites (섬유/입자 혼합금속복합재료의 인장거동)

  • 정성욱;정창규;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.139-142
    • /
    • 2002
  • This study presents a mathematical model predicting the stress-strain behavior of fiber reinforced (FMMCs) and fiber/particle reinforced metal matrix composites (F/P MMCs). MMCs were fabricated by squeeze casting method using Al2O3 short fiber and particle as reinforcement, and A356 aluminum alloy as matrix. The fiber/particle ratios of F/P MMCs were 2:1, 1:1, 1:2 with the total reinforcement volume fraction of 20 vol.%, and the FMMCs were reinforced with 10 vol,%, 15 vol. %, 20 vol. % of fibers. Tensile tests were conducted and compared with predictions which were derived using laminate analogy theory and multi-failure model of reinforcements. Results show that the tensile strength of FMMCs with 10 vol.% of fiber was well matched with prediction, and as the fiber volume increases, predictions become larger than experimental results. The difference between the prediction and experiment is considered to be a result of matrix allowance of fiber damage in tensile loading. As the fiber volume fraction in FMMCs increases, the fiber damage increases and so that the tensile strength is reduced. The strength of F/P MMCs approaches more closely to the prediction than FMMCs reinforced with 20 vol.% of fibers because F/P MMCs contains small quantity of fibers and thus has a positive effect in fiber strengthening.

  • PDF

Finite Volume Method for Two-Dimensional Unsteady Flow in Open Channel (開水路에서의 2次元 不定流 解析를 위한 有限體積法)

  • Lee, Jin-Hee;Kim, Kyung-Tak;Sim, Myung-Pil
    • Water for future
    • /
    • v.29 no.5
    • /
    • pp.173-184
    • /
    • 1996
  • In this study, a two-dimensional shallow-water equation was used to develop the mathematical model for computing water levels and flow distribution. In the discretization equations, based on the finite volume method (FVM), the third order Runge-Kutta method and the third order upwind scheme were introduced to handle the unsteady and vconvective terms in the governing equations. To determine the accuracy of the developed model, it was applied to the rectangular horizontal channel in a frictionless flow. The water depth and velocity obtained by the numerical model were found to agree closely with the exact solution. The model was also applied to the rectangular channel with both the symmetric and the non symmetric constriction. The velocity distribution of the flow and the propagation of the flood wave were simulated and the results well described the flow characteristics.

  • PDF