• Title/Summary/Keyword: Mathematical software

Search Result 492, Processing Time 0.029 seconds

Frequency Stabilization Method for Grid Integration of Large-scale Centralized Wind Farms via VSC-HVDC Technology

  • Peng, Yanjian;Li, Yong;Liu, Fang;Xu, Zhiwei;Cao, Yijia
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.547-557
    • /
    • 2018
  • This work proposes a control method of frequency stabilization for grid integration of large-scale wind farms via the voltage source converter-based high-voltage direct current (VSC-HVDC) technology. First, the topology of grid integration of a large-scale wind farm via the VSC-HVDC link is provided, and simple control strategies for wind turbines, wind farm side VSC (WFVSC), and grid side VSC are presented. Second, a mathematical model between the phase angle of WFVSC and the frequency of the wind farm is established. The control principle of the large-scale wind power integrated system is analyzed in theory in accordance with the mathematical model. Third, frequency and AC voltage controllers of WFVSC are designed based on the mathematical model of the relationships between the phase angle of WFVSC and the frequency of the wind farm, and between the modulation index of WFVSC and the voltage of the wind farm. Corresponding controller structures are established by deriving a transfer function, and an optimization method for selecting the parameters of the frequency controller is presented. Finally, a case study is performed under different operating conditions by using the DIgSILENT/PowerFactory software. Results show that the proposed control method has good performance in the frequency stabilization of the large-scale wind power integrated system via the VSC-HVDC technology.

Development of Digital Leaf Authoring Tool for Virtual Landscape Production (가상 조경 생성을위한 디지털 잎 저작도구 개발)

  • Kim, Jinmo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.5
    • /
    • pp.1-10
    • /
    • 2015
  • This study proposes a method of developing authoring tool that can easily and intuitively generate diverse digital leaves that compose virtual landscape. The main system of the proposed authoring tool consists of deformation method for the contour of leaf blade based on image warping, procedural modeling of leaf vein and visualization method based on mathematical model that expresses the color and brightness of leaves. First, the proposed authoring tool receives leaf input image and searches for contour information on the leaf blades. It then designs leaf blade deformation method that can generate diverse shapes of leaf blades in an intuitive structure using feature-based image warping. Based on the computed leaf blade contour, the system implements the generalized procedural modeling method suitable for the authoring tool that generates natural vein patterns appropriate for the leaf blade shape. Finally, the system applies visualization function that can express color and brightness of leaves and their changes over time using a mathematical model based on convolution sums of divisor functions. This paper provides texture support function so that the digital leaves that were generated using the proposed authoring tool can be used in a variety of three-dimensional digital contents field.

A Study on the Air to Air Missile Control Fin Optimization Using the Mathematical Modeling Based on the Fluid-Structure Interaction Simulation (수학적 모델링을 이용한 공력-구조 연계 시뮬레이션 기반 공대공 미사일 조종날개 최적화 연구)

  • Lee, Seung-Jin;Park, Jin-Yong
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • This study focuses on the air to air missile control fin planform optimization for the minimizing hinge moment with the considering phenomena of fluid and structure simultaneously. The fluid-structure interaction method is applied for the fluid and structure phenomena simulation of the control fins. A transient-loosely coupled method is used for the fluid-structure interaction simulation because it is suited for using each fluid and structure dedicated simulation software. Searching global optimization point is required many re-calculation therefore in this study, a mathematical model is applied for rapidly calculation. The face centered central composite method is used for generating design points and the 2nd polynomial response surface is sued for generating mathematical model. Global optimization is performed by using the generic algorithm. An objective function is the minimizing travel distance of the center of pressure between Mach 0.7 and 2.0 condition. Finally, the objective function of optimized planform is reduced 7.5% than the baseline planform with satisfying constrained conditions.

White-Box AES Implementation Revisited

  • Baek, Chung Hun;Cheon, Jung Hee;Hong, Hyunsook
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.273-287
    • /
    • 2016
  • White-box cryptography presented by Chow et al. is an obfuscation technique for protecting secret keys in software implementations even if an adversary has full access to the implementation of the encryption algorithm and full control over its execution platforms. Despite its practical importance, progress has not been substantial. In fact, it is repeated that as a proposal for a white-box implementation is reported, an attack of lower complexity is soon announced. This is mainly because most cryptanalytic methods target specific implementations, and there is no general attack tool for white-box cryptography. In this paper, we present an analytic toolbox on white-box implementations of the Chow et al.'s style using lookup tables. According to our toolbox, for a substitution-linear transformation cipher on n bits with S-boxes on m bits, the complexity for recovering the $$O\((3n/max(m_Q,m))2^{3max(m_Q,m)}+2min\{(n/m)L^{m+3}2^{2m},\;(n/m)L^32^{3m}+n{\log}L{\cdot}2^{L/2}\}\)$$, where $m_Q$ is the input size of nonlinear encodings,$m_A$ is the minimized block size of linear encodings, and $L=lcm(m_A,m_Q)$. As a result, a white-box implementation in the Chow et al.'s framework has complexity at most $O\(min\{(2^{2m}/m)n^{m+4},\;n{\log}n{\cdot}2^{n/2}\}\)$ which is much less than $2^n$. To overcome this, we introduce an idea that obfuscates two advanced encryption standard (AES)-128 ciphers at once with input/output encoding on 256 bits. To reduce storage, we use a sparse unsplit input encoding. As a result, our white-box AES implementation has up to 110-bit security against our toolbox, close to that of the original cipher. More generally, we may consider a white-box implementation of the t parallel encryption of AES to increase security.

A New Focus Measure Method Based on Mathematical Morphology for 3D Shape Recovery (3차원 형상 복원을 위한 수학적 모폴로지 기반의 초점 측도 기법)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • Shape from focus (SFF) is a technique used to reconstruct 3D shape of objects from a sequence of images obtained at different focus settings of the lens. In this paper, a new shape from focus method for 3D reconstruction of microscopic objects is described, which is based on gradient operator in Mathematical Morphology. Conventionally, in SFF methods, a single focus measure is used for measuring the focus quality. Due to the complex shape and texture of microscopic objects, single measure based operators are not sufficient, so we propose morphological operators with multi-structuring elements for computing the focus values. Finally, an optimal focus measure is obtained by combining the response of all focus measures. The experimental results showed that the proposed algorithm has provided more accurate depth maps than the existing methods in terms of three-dimensional shape recovery.

Heat Transfer Analysis in High Efficiency Electric Melting Furnace (고효율/친환경 전기 용해로 내의 열전달 해석)

  • Seol, Dong-Il;Lee, Byung-Hwa;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2285-2290
    • /
    • 2007
  • The main objective of this study is to analyze the heat transfer characteristics in the electric melting furnace. Local temperatures are measured at various location in the furnace using the B-type thermocouples. In this paper, the numerical simulation was performed using the ANSYS software, and compared with experimental data. Mathematical heat transfer model for the prediction of temperature distribution has been developed by considering the thermal radiation among heating element, crucible and insulating materials. The results show that the temperature distributions predicted by the numerical simulation agree with experimental results comparatively.

  • PDF

Extraction of Heart Region in EBT Images (EBT 영상에서 심장 영역의 추출)

  • Kim, Hyun-Soo;Lee, Sung-Kee
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.6
    • /
    • pp.651-659
    • /
    • 2000
  • It is very important to extract the heart region in the medical images. In this paper, we present the automatic heart region extraction in the EBT (electron beam tomography) images. We use contrast thresholding, anatomic knowledge, and mathematical morphology to extract the heart region. Using these results, we applied the active contour models (snakes) to search the exact region. We analyzed the experimental results by comparing the results with the results made by medical experts.

  • PDF

Linear Time Algorithm for Network Reliability Problem

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.73-77
    • /
    • 2016
  • This paper deals with the network reliability problem that decides the communication line between main two districts while the k districts were destroyed in military communication network that the n communication lines are connected in m districts. For this problem, there is only in used the mathematical approach as linear programming (LP) software package and has been unknown the polynomial time algorithm. In this paper we suggest the heuristic algorithm with O(n) linear time complexity to solve the optimal solution for this problem. This paper suggests the flow path algorithm (FPA) and level path algorithm (LPA). The FPA is to search the maximum number of distinct paths between two districts. The LPA is to construct the levels and delete the unnecessary nodes and edges. The proposed algorithm can be get the same optimal solution as LP for experimental data.

An Algorithm for Predicting the Relationship between Lemmas and Corpus Size

  • Yang, Dan-Hee;Gomez, Pascual Cantos;Song, Man-Suk
    • ETRI Journal
    • /
    • v.22 no.2
    • /
    • pp.20-31
    • /
    • 2000
  • Much research on natural language processing (NLP), computational linguistics and lexicography has relied and depended on linguistic corpora. In recent years, many organizations around the world have been constructing their own large corporal to achieve corpus representativeness and/or linguistic comprehensiveness. However, there is no reliable guideline as to how large machine readable corpus resources should be compiled to develop practical NLP software and/or complete dictionaries for humans and computational use. In order to shed some new light on this issue, we shall reveal the flaws of several previous researches aiming to predict corpus size, especially those using pure regression or curve-fitting methods. To overcome these flaws, we shall contrive a new mathematical tool: a piecewise curve-fitting algorithm, and next, suggest how to determine the tolerance error of the algorithm for good prediction, using a specific corpus. Finally, we shall illustrate experimentally that the algorithm presented is valid, accurate and very reliable. We are confident that this study can contribute to solving some inherent problems of corpus linguistics, such as corpus predictability, compiling methodology, corpus representativeness and linguistic comprehensiveness.

  • PDF

Analytic Model for Optimal Checkpoints in Mobile Real-time Systems

  • Lim, Sung-Hwa;Lee, Byoung-Hoon;Kim, Jai-Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3689-3700
    • /
    • 2016
  • It is not practically feasible to apply hardware-based fault-tolerant schemes, such as hardware replication, in mobile devices. Therefore, software-based fault-tolerance techniques, such as checkpoint and rollback schemes, are required. In checkpoint and rollback schemes, the optimal checkpoint interval should be applied to obtain the best performance. Most previous studies focused on minimizing the expected execution time or response time for completing a given task. Currently, most mobile applications run in real-time environments. Therefore, it is extremely essential for mobile devices to employ optimal checkpoint intervals as determined by the real-time constraints of tasks. In this study, we tackle the problem of determining the optimal inter-checkpoint interval of checkpoint and rollback schemes to maximize the deadline meet ratio in real-time systems and to build a probabilistic cost model. From this cost model, we can numerically find the optimal checkpoint interval using mathematical tools. The performance of the proposed solution is evaluated using analytical estimates.