• Title/Summary/Keyword: Mathematical software

Search Result 487, Processing Time 0.022 seconds

A Study on the Optimization Problem Solving utilizing the Quadratic Curve using the Dynamic Geometry Software (동적기하프로그램을 활용한 이차곡선 최적화 문제해결에 관한 연구)

  • Kim, Jung Soo;Jeon, Bo Hyun;Chung, Young Woo;Kim, Boo Yoon;Lee, Yan
    • East Asian mathematical journal
    • /
    • v.30 no.2
    • /
    • pp.149-172
    • /
    • 2014
  • The problems of optimization addressed in the high school curriculum are usually posed in real-life contexts. However, because of the instructional purposes, problems are artificially constructed to suit computation, rather than to reflect real-life problems. Those problems have thus limited use for teaching 'practicalities', which is one of the goals of mathematics education. This study, by utilizing 'GeoGebra', suggests the optimization problem solving related to the quadratic curve, using the contour-line method which contemplates the quadratic curve changes successively. By considering more realistic situations to supplement the limit which deals only with numerical and algebraic approach, this attempt will help students to be aware of the usefulness of mathematics, and to develop interests in mathematics, as well as foster students' integrated thinking abilities across units. And this allows students to experience a variety of math.

Modeling for fixed-end moments of I-sections with straight haunches under concentrated load

  • Soto, Inocencio Luevanos;Rojas, Arnulfo Luevanos
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.597-610
    • /
    • 2017
  • This paper presents a mathematical model for fixed-end moments of I-sections with straight haunches for the general case (symmetrical and/or non-symmetrical) subjected to a concentrated load localized anywhere on beam taking into account the bending deformations and shear, which is the novelty of this research. The properties of the cross section of the beam vary along its axis "x", i.e., the flange width "b", the flange thickness "t", the web thickness "e" are constant and the height "d" varies along of the beam, this variation is linear type. The compatibility equations and equilibrium are used to solve such problems, and the deformations anywhere of beam are found by the virtual work principle through exact integrations using the software "Derive" to obtain some results. The traditional model takes into account only bending deformations, and others authors present tables considering the bending deformations and shear, but are restricted. A comparison between the traditional model and the proposed model is made to observe differences, and an example of structural analysis of a continuous highway bridge under live load is resolved. Besides the effectiveness and accuracy of the developed models, a significant advantage is that fixed-end moments are calculated for any cross section of the beam "I" using the mathematical formulas.

A Study of the Syllabus Based on van Hiele Theory using GSP in Middle School Geometry - Focused on the 1st Grade Middle School Students - (반힐레 이론과 GSP를 활용한 중학교 기하영역에 관한 연구 - 8-나 단계의 사각형의 성질을 중심으로 -)

  • Lee, Chang-Yeon;Whang, Woo-Hyung
    • The Mathematical Education
    • /
    • v.49 no.1
    • /
    • pp.85-109
    • /
    • 2010
  • The purpose of the study is to devise syllabus in which traditional textbooks were rearranged by van Hiele Level theory and van Hiele instruction step 5 was applied to syllabus which used computer software, GSP especially in step 2 for students who studied properties and relations of the figure. Another purpose is to analyze the van Hiele Level distribution and find out how significant improvement syllabus based instruction could make compared with the traditional classes using textbooks. The results of the study revealed that more than half of the students were less than Level 1 in the comparative group but more than half of the students have reached Level 3 in the experimental group. And improvement of van Hiele Level was significant in syllabus based classes compared with traditional classes using textbooks by the Welch-Aspin tests and Chi-squared tests.

The Conversion of a Set, a Sequence, and a Map in VDM to a Linked List in a Programming Language (VDM의 자료구조인 set, sequency, map의 프로그래밍 언어 자료구조인 linked list로의 변환)

  • Yu, Mun-Seong
    • The KIPS Transactions:PartD
    • /
    • v.8D no.4
    • /
    • pp.421-426
    • /
    • 2001
  • A formal development method is used to develop software rigorously and systematically. In a formal development method, we specify system by a formal specification language and gradually develop the system more concretely until we can implement the system. VDM is one of formal specification languages. VDM uses mathematical data structures such as sets, sequences, and maps to specify the system, but most programming languages do not have such data structures. Therefore, these data structures should be converted. We can convert mathematical data structures in VDM to a linked list, a data structure in a programming language. In this article, we propose a method to convert a set, a sequence, and a map in VDM to a linked list in a programming language and prove the correctness of this conversion mathematically.

  • PDF

Solving a New Multi-Period Multi-Objective Multi-Product Aggregate Production Planning Problem Using Fuzzy Goal Programming

  • Khalili-Damghani, Kaveh;Shahrokh, Ayda
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.4
    • /
    • pp.369-382
    • /
    • 2014
  • This paper introduces a new multi-product multi-period multi-objective aggregate production planning problem. The proposed problem is modeled using multi-objective mixed-integer mathematical programming. Three objective functions, including minimizing total cost, maximizing customer services level, and maximizing the quality of end-product, are considered, simultaneously. Several constraints such as quantity of production, available time, work force levels, inventory levels, backordering levels, machine capacity, warehouse space and available budget are also considered. Some parameters of the proposed model are assumed to be qualitative and modeled using fuzzy sets. Then, a fuzzy goal programming approach is proposed to solve the model. The proposed approach is applied on a real-world industrial case study of a color and resin production company called Teiph-Saipa. The approach is coded using LINGO software. The efficacy and applicability of the proposed approach are illustrated in the case study. The results of proposed approach are compared with those of the existing experimental methods used in the company. The relative dominance of the proposed approach is revealed in comparison with the experimental method. Finally, a data dictionary, including the way of gathering data for running the model, is proposed in order to facilitate the re-implementation of the model for future development and case studies.

Modeling of Fine Cracks using Fuzzy Mathematical Morphology (퍼지 수학적 형태학을 이용한 미세균열 모델링)

  • Park, In-Kyoo;Choi, Gyoo-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.105-111
    • /
    • 2010
  • In this paper the elasticity of fault-detection algorithm based on fuzzy logic is proposed through lots of experiments, justifying its validity. The four mathematical morpholgical operators was defined to detect the cracks. The cracks was detected via center of area method with ${\lambda}$-fuzzy measure of fuzzy sets. However generally favorable, the result owes to how adequate the lighting device is designed in case of the so far fine crack of pieces. In an attempt to improve the response of the system, It is designed to minimize the use of memory via LookUp table in software.

The Study on Extension of Regular Polygon Using Cabri Geometry II (기하프로그램을 활용한 정다각형 외연의 확장에 대한 연구)

  • Suh, Bo-Euk
    • Journal of the Korean School Mathematics Society
    • /
    • v.15 no.1
    • /
    • pp.183-197
    • /
    • 2012
  • Geometry having long history of mathematics have important role for thinking power and creativity progress in middle school. The regular polygon included in plane geometry was mainly taught convex regular polygon in elementary school and middle school. In this study, we investigated the denotation's extension of regular polygon by mathematical basic knowledge included in school curriculum. For this research, first, school mathematical knowledge about regular polygon was analyzed. And then, basic direction of research was established for inquiry. Second, based on this analysis inductive inquiry activity was performed with research using geometry software(Cabri Geometry II). Through this study the development of enriched learning material and showing the direction of geometry research is expected.

  • PDF

Analysis on Mathematically Gifted Middle School Students' Characteristic of Mathematical Thinking and Verbal Expression in the Study of Parallel Lines in Non-Euclidean Disc Model using Dynamic Geometry Software (GSP를 사용한 비유클리드 원판모델 학습에서 나타난 중학교 수학 영재들의 평행선에 관한 인식 및 언어 표현 방식 분석)

  • Hong, Seong Kowan
    • Journal of Educational Research in Mathematics
    • /
    • v.23 no.1
    • /
    • pp.53-74
    • /
    • 2013
  • The purpose of this paper is to analyze how mathematically gifted middle school students find out the necessary and sufficient condition for a certain hyperbolic line to be parallel to a given hyperbolic line in Non-Euclidean disc model (Poincar$\acute{e}$ disc model) using the Geometer's Sketchpad. We also investigated their characteristic of mathematical thinking and analyze how they express what they had observed while they did mental experiments in the Poincar$\acute{e}$ disc using computer-aided construction tools, measurement tools and inductive reasoning.

  • PDF

Analysis on Geo-stress and casing damage based on fluid-solid coupling for Q9G3 block in Jibei oil field

  • Ji, Youjun;Li, Xiaoyu
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.677-686
    • /
    • 2018
  • Aimed at serious casing damage problem during the process of oilfield development by injecting water, based on seepage mechanics, fluid mechanics and the theory of rock mechanics, the multi-physics coupling theory was also taken into account, the mathematical model for production of petroleum with water flooding was established, and the method to solve the coupling model was presented by combination of Abaqus and Eclipse software. The Q9G3 block in Jibei oilfield was taken for instance, the well log data and geological survey data were employed to build the numerical model of Q9G3 block, the method established above was applied to simulate the evolution of seepage and stress. The production data was imported into the model to conduct the history match work of the model, and the fitting accuracy of the model was quite good. The main mechanism of casing damage of the block was analyzed, and some wells with probable casing damage problem were pointed out, the displacement of the well wall matched very well with testing data of the filed. Finally, according to the simulation results, some useful measures for preventing casing damage in Jibei oilfield was proposed.

A Simulation Study of Position Control Performance of a Shape Memory Alloy-Actuated Flow Control Valve (형상기업합금을 이용한 유량제어밸브의 위치제어 적용 시뮬레이션)

  • Choi, Su-Hyun;Lee, Han-Suk;Kuk, Kum-Hoan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.79-87
    • /
    • 1999
  • In this study, a new type of flow control valve which is SMA actuated flow control valve is presented. The flow control valve is actuated by a small motion of shape memory alloy. The performance of this valve as a position control component is analyzed by computer simulation. A variable structure control technique is applied for the position control by the flow control valve. The position control performance of the valve is evaluated on the step responses of a PID control by a electrohydraulic servo valve. For the simulation study, first, the mathematical model of a hydraulic system, which is consisted of the flow control valve and a hydraulic cylinder, is formulated. This mathematical model and the designed variable structure control algorithm are then combined by the MATLAB software. The same sequence of work is carried out for the PID position control system with a electrohydraulic servo valve. The simulation results show the validity of the new type of flow control valve as a variable position control component.

  • PDF