• Title/Summary/Keyword: Mathematical maneuvering model

Search Result 71, Processing Time 0.024 seconds

Nonlinear Motion Analysis of FPSO and Shuttle Tanker in a Tandem Configuration (탠덤 배치된 FPSO와 셔틀탱커의 비선형 운동 해석)

  • Lim, Choon-Gyu;Lee, Ho-Young;Shin, Hyung-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.5 s.149
    • /
    • pp.560-567
    • /
    • 2006
  • FPSO and shuttle tanker are connected to each other by a mooring hawser and a loading hose through which cargo oil is off-loaded. Even in mild sea-state. environmental loads can cause unstable large drift motions between two vessels in tandem off-loading operations, which may result in collision incidents. Accordingly. the analysis on the relative motion between two vessels due to the environmental loads should be investigated in initial design stage. In this study, the low speed maneuvering equation is employed to simulate nonlinear motions of FPSO and shuttle tanker. Low frequency wave drift forces including hydrodynamic interactions between two vessels are evaluated by near field approaches. Current loads are determined by mathematical model of MMG and wind loads are calculated by employing the wind spectrum according to the guidelines of API-RP2A. Mooring forces produced by turret mooring lines and a flexible hawser are modeled quasi-statically by catenary equations. The effect of environmental loads that affect nonlinear motion is investigated through variation in their magnitudes and the nonlinear motions between FPSO and shuttle tanker are simulated under wave, current and wind in time domain.

A Study on Automatic Control for Collision Avoidance of a Ship under Appearance of Multi-vessels (다수선박의 충돌회피를 위한 자동제어에 관한 연구)

  • Yoon Ji-Hyun;Lee Seung-Keon;Im Nam-Kyun
    • Journal of Navigation and Port Research
    • /
    • v.29 no.1 s.97
    • /
    • pp.29-34
    • /
    • 2005
  • A mis-handling of the ship operators, treated as one qf the main causes of a ship accidents, normally has caused a ship to collide with obstacles like a reef, a rock and other ships etc. since their ability has been declining little by little even though the port conditions have been getting worse. The ship needs a highly sophisticated technology as her size and speed increase as the ship have been demanded. For example, Auto Avoidance Control System gradually has been receiving a growing interest to control the entire ship safely. From that purpose, this research has been done. The research was based on the MMG mathematical model, used Surge-Sway-Yaw-Roll motion equation and Fuzzy theory for calculating the collision-risk Also the research successively was done when the ship encountered continual multitude ships.

Determination of taxiing resistances for transport category airplane tractive propulsion

  • Daidzic, Nihad E.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.651-677
    • /
    • 2017
  • For the past ten years' efforts have been made to introduce environmentally-friendly "green" electric-taxi and maneuvering airplane systems. The stated purpose of e-taxi systems is to reduce the taxiing fuel expenses, expedite pushback procedures, reduce gate congestion, reduce ground crew involvement, and reduce noise and air pollution levels at large airports. Airplane-based autonomous traction electric motors receive power from airplane's APU(s) possibly supplemented by onboard batteries. Using additional battery energy storages ads significant inert weight. Systems utilizing nose-gear traction alone are often traction-limited posing serious dispatch problems that could disrupt airport operations. Existing APU capacities are insufficient to deliver power for tractive taxiing while also providing for power off-takes. In order to perform comparative and objective analysis of taxi tractive requirements a "standard" taxiing cycle has been proposed. An analysis of reasonably expected tractive resistances has to account for steepest taxiway and runway slopes, taxiing into strong headwind, minimum required coasting speeds, and minimum acceptable acceleration requirements due to runway incursions issues. A mathematical model of tractive resistances was developed and was tested using six different production airplanes all at the maximum taxi/ramp weights. The model estimates the tractive force, energy, average and peak power requirements. It has been estimated that required maximum net tractive force should be 10% to 15% of the taxi weight for safe and expeditious airport movements. Hence, airplanes can be dispatched to move independently if the operational tractive taxi coefficient is 0.1 or higher.

A Study on the Automatic Control for Collision Avoidance of the Ships (선박의 충돌회피를 위한 자동제어에 관한 기초적 연구)

  • Lee, Seung-Keon;Kwon, Bae-Jun
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.8-14
    • /
    • 2002
  • The collisions of vessel at sea show high among the whole marine accidents. Especially, the accidents of fishing vessels take the largest portion of the collisions. Therefore, a technique to reduce these accidents should be developed. The automatic control for avoiding collision suggested in this study consists of two steps. The first is recognizing collision risk with fuzzy Theory and the other is maneuvering the model ship on the basis of collision risk calculated from the first step. The information form the position and estimated time of collision point(DCPA and TCPA) is used to assess the collision risk. To verify this system, a fishing vessel was simulated according to MMG mathematical model. The simulations result shows quite good application in avoiding the collision of ship.

The Analysis of Helicopter Maneuvering Flight Using the Indirect Method - Part II. Applicability of High Fidelity Helicopter Models (Indirect Method를 이용한 헬리콥터 기동비행 해석 - Part II. High Fidelity 헬리콥터 모델링의 사용 가능성)

  • Kim, Chang-Joo;Yang, Chang-Deok;Kim, Seung-Ho;Hwang, Chang-Jeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.31-38
    • /
    • 2008
  • This paper deals with the nonlinear optimal control approach to helicopter maneuver problems using the indirect method. We apply a penalty function to the integral deviation from a prescribed trajectory to convert the system optimality to an unconstrained optimal control problem. The resultant two-point boundary value problem has been solved by using a multiple-shooting method. This paper focuses on the model selection strategies to resolve the problem of numerical instability and high wait time when a high fidelity model with rotor dynamics is applied. Four different types of helicopter models are identified, two of which are linear models with or without rotor models, as well as two models which include the nonlinear mathematical model for rotor in its formulation. The relative computation time and the number of function calls for each model are compared in order to provide a guideline for the selection of helicopter model.

Discretization of Nonlinear Systems with Delayed Multi-Input VIa Taylor Series and Scaling and Squaring Technique

  • Yuanliang Zhang;Chong Kil To
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.1975-1987
    • /
    • 2005
  • An input time delay always exists in practical systems. Analysis of the delay phenomenon in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding discrete-time model for implementation via digital computers. In this paper a new scheme for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption is proposed. The mathematical structure of the new discretization method is analyzed. On the basis of this structure the sampled-data representation of nonlinear systems with time-delayed multi-input is presented. The delayed multi-input general equation has been derived. In particular, the effect of the time-discretization method on key properties of nonlinear control systems, such as equilibrium properties and asymptotic stability, is examined. Additionally, hybrid discretization schemes that result from a combination of the scaling and squaring technique (SST) with the Taylor series expansion are also proposed, especially under conditions of very low sampling rates. Practical issues associated with the selection of the method's parameters to meet CPU time and accuracy requirements, are examined as well. A performance of the proposed method is evaluated using a nonlinear system with time delay maneuvering an automobile.

Development of Nonlinear Control Algorithm for Automatic Berthing of Ships

  • Won, Moon-Cheol;Hong, Seong-Kuk;Jung, Yun-Ha;Kim, Sun-Young;Son, Nam-Sun;Yoon, Hyun-Gyu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.359-362
    • /
    • 2006
  • This study develops an automatic berthing control algorithm for ships with a bow thruster and a stern thruster as well as a rudder. A nonlinear mathematical model for low speed maneuvering of ships is used to develop a MIMO(multi-input multi-output) nonlinear control algorithm. The algorithm consists of two parts, which are forward velocity control and heading angle control. The control algorithm is designed based on the longitudinal and yaw dynamic models of ships. The desired heading angle is obtained by the so called "Line of Sight" method. An optimal control force allocation method of the rudder and the thrusters is suggested. The nonlinear control algorithms are tested by numerical simulations using MATLAB, and shows good tracking performances.

  • PDF

A Study of Hydrodynamic Forces Acting on a Ship Hull Under Lateral Low Speed Motion (저속 횡 이동하는 선박의 선체에 작용하는 유체력에 관한 연구)

  • 이윤석;김순갑
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.2
    • /
    • pp.29-42
    • /
    • 1999
  • An accurate method of estimating ship maneuverability needs to be developed to evaluate precisely and improve the maneuverability of ships according to the water depth. In order to estimate maneuverability by a mathematical model. The hydrodynamic forces acting on a ship hull and the flow field around the ship in maneuvering motion need to be estimated. The ship speed new the berth is very low and the fluid flow around a ship hull is unsteady. So, the transient fluid motion should be considered to estimate the drag force acting on the ship hull. In the low speed and short time lateral motion, the vorticity is created by the body and grow up in the acceleration stage and the velocity induced by the vorticity affect to the body in deceleration stage. For this kind of problem, CFD is considered as a goof tool to understand the phenomena. In this paper, the 2D CFD code is used for basic consideration of the phenomena to solve the flow in the cross section of the ship considering the ship is slender and the water depth is large enough. The flow fields Added and hydrodynamic forces for the some prescribed motions are computed and compared with the preliminary experiment results. The comparison of the force with measurement is shown a fairly good agreement in tendency. The 3D Potential Calculation based on the Hess & Smith Theory is employed to predict the surge, sway added mass and yaw added moment of inertia of hydrodynamic coefficients for M/V ESSO OSAKA according to the water depth. The results are also compared with experimental data. Finally, the sway added mass of hydrodynamic coefficients for T/S HANNARA is suggested in each water depth.

  • PDF

Numerical Study on Towing Stability of LNG Bunkering Barge in Calm Water (LNG 벙커링 바지의 정수 중 예인안정성에 관한 수치연구)

  • Oh, Seunghoon;Jung, Dongho;Jung, Jae-Hwan;Hwang, Sung-Chul;Cho, Seok-kyu;Sung, Hong Gun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.185-188
    • /
    • 2019
  • In this paper, the towing stability of the LNG bunker barge is estimated. Currently, LNG bunkering barge is being developed as an infrastructure for the bunkering of LNG (Liquefied Natural Gas), an eco-friendly energy source. Since the LNG bunker barge are in the form of towed ship connected to the tow line, the towing stability of the LNG bunker barge is very important for the safety of not only the LNG bunker barge but also the surrounding sailing vessels. The numerical code for towing simulation was developed to estimate the towing stability of the LNG bunker barge at the initial design stage. The MMG(Manoeuvring Mathematical Group) model was applied to the equations of motion and the empirical formula was applied to the maneuvering coefficients so that they could be used in the initial design stage. To validity of the developed numerical code, it was compared with published calculation and model test results. Towing simulations were carried out according to with and without stern skeg of the LNG bunker barge using the developed numerical code. Through the results of the simulations, the appropriateness of the stern skeg area designed was confirmed.

  • PDF

A Experimental Study on Vibration Attenuation of a Plate with Eddy Current Damper (와전류 감쇠기를 적용한 평판의 진동 저감에 관한 실험적 연구)

  • Pyeon, Bong-Do;Kim, Jong-Hyuk;Bae, Jae-Sung;Hwang, Jai-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.355-361
    • /
    • 2020
  • Among these satellites, low - orbit small satellites with military characteristics require multi - target observation, and demand for high-resolution photographs and images is increasing. Fast maneuverability is the most important factor for high-resolution images and multi - target observations. However, in the case of a small satellites, it is possible to perform the attitude maneuver if it has high speed, but the residual vibration occurs when the attitude maneuver is completed and the next attitude maneuver is completed. In this study, to verify the vibration characteristics of the plate generated after attitude maneuver, an experimental fixture for simulating the attitude maneuver was fabricated and tested. In addition, Eddy Current Damper (ECD) using Eddy Current Brake system (ECB) is proposed as a passive damping method using permanent magnet to reduce vibration. A mathematical model was established to apply ECD and it was experimentally implemented according to the magnetic flux density and the air gap of the permanent magnet. One plate of four solar panels (plate) was specified, the residual vibration reduction performance after the test was verified experimentally.