• Title/Summary/Keyword: Mathematical concept & Understanding

Search Result 201, Processing Time 0.026 seconds

A Didactical Analysis on the Understanding of the Concept of Negative Numbers (음수 개념의 이해에 관한 교수학적 분석)

  • Woo, Jeong-Ho;Choi, Byung-Chul
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.1
    • /
    • pp.1-31
    • /
    • 2007
  • Negative numbers have been one of the most difficult mathematical concepts, and it was only 200 years ago that they were recognized as a real object of mathematics by mathematicians. It was because it took more than 1500 years for human beings to overcome the quantitative notion of numbers and recognize the formality in negative numbers. Understanding negative numbers as formal ones resulted from the Copernican conversion in mathematical way of thinking. we first investigated the historic and the genetic process of the concept of negative numbers. Second, we analyzed the conceptual fields of negative numbers in the aspect of the additive and multiplicative structure. Third, we inquired into the levels of thinking on the concept of negative numbers on the basis of the historical and the psychological analysis in order to understand the formal concept of negative numbers. Fourth, we analyzed Korean mathematics textbooks on the basis of the thinking levels of the concept of negative numbers. Fifth, we investigated and analysed the levels of students' understanding of the concept of negative numbers. Sixth, we analyzed the symbolizing process in the development of mathematical concept. Futhermore, we tried to show a concrete way to teach the formality of the negative numbers concepts on the basis of such theoretical analyses.

  • PDF

On the students' thinking of the properties of derivatives (도함수의 성질에 관련한 학생들의 사고에 대하여)

  • Choi, Young Ju;Hong, Jin Kon
    • The Mathematical Education
    • /
    • v.53 no.1
    • /
    • pp.25-40
    • /
    • 2014
  • Mathematical concept exists in the structural form, not in the independent form. The purpose of this study is to consider the network which students actually have for the mathematical concept structure related to the properties of derivatives. First, we analyzed the properties of derivatives in 'Mathematics II' and showed the mathematical concept structure of the relations among derivatives, functions, and primitive functions as a network. Also, we investigated the understanding of high school students for the mathematical concept structure between derivatives and functions, and the structure between functions and second order derivatives when the functional formula is not given, and only the graph is given. The results showed that students mainly focus on the relation of 'function-derivatives', the thinking process for direction of derivative and the thinking style for algebra. On this basis, we suggest the educational implication that is necessary for students to build the network properly.

An Analysis of Understanding Level of High School Students Shown in Trigonometric Functions (삼각함수에 대한 고등학생들의 이해 층위 분석)

  • Lee, Yu Bin;Cho, Cheong Soo
    • Communications of Mathematical Education
    • /
    • v.33 no.3
    • /
    • pp.319-334
    • /
    • 2019
  • In this study, using the tasks related trigonometric functions, the degree of high school students' understanding of the function concept was examined through the level of Hitt(1998). First, the degree of the students' understanding was classified by level, then the concept understanding was reclassified by the process or the object. As a result, high school students' concept understanding showed incompleteness in three stages. It was possible to know that the process in the interpretation of the graph is the main perspective, and the operation of algebraic representation is regarded as important. Based on these results, it seems necessary to study the teaching-learning method which can understand trigonometric functions from various perspectives. It seems necessary to study a lesson model that can reach function concept's understanding level 5 that maintains consistency between problem solving and representation system.

A Search for the meaningful method of teaching for Correct Understanding of Advanced Mathematics Concepts (고등 수학 개념의 올바른 이해를 위한 유의미한 교수법 탐색)

  • 한길준;우호식
    • The Mathematical Education
    • /
    • v.40 no.2
    • /
    • pp.241-252
    • /
    • 2001
  • Many high school students are having difficulties for studying advanced mathematics concepts. It is more complicated than in junior high school and they are losing interest and confidence. In this paper, advanced mathematics concepts are not just basic concepts such as natural numbers, fractions or figures that can be learned through life experience but concepts that are including variables, functions, sets, tangents and limits are more abstract and formal. For the students to understand these ideas is too heavy a burden and so many of the students concentrate their efforts on just memorizing and not understanding. It is necessary to search for a meaningful method of teaching for advanced mathematics that covers deductive methods and symbols. High school teachers are always asking themselves the following question, “How do we help the students to understand the concept clearly and instruct it in a meaningful way?” As a solution we propose the followings : I. To ensure they have the right understanding of concept image involved in the concept definition. II. Put emphasis on the process of making mental representations and the role of intuition. III. To instruct students and understand them as having many chance of the instructional conversation. In conclusion, we studied the meaningful method of teaching with the theory of Ausubel related to the above proposed methods. To understand advanced mathematics concepts correctly, the mutual understanding of both teachers and students is necessary.

  • PDF

The Impact of Children's Understanding of Fractions on Problem Solving (분수의 하위개념 이해가 문제해결에 미치는 영향)

  • Kim, Kyung-Mi;Whang, Woo-Hyung
    • The Mathematical Education
    • /
    • v.48 no.3
    • /
    • pp.235-263
    • /
    • 2009
  • The purpose of the study was to investigate the influence of children's understanding of fractions in mathematics problem solving. Kieren has claimed that the concept of fractions is not a single construct, but consists of several interrelated subconstructs(i.e., part-whole, ratio, operator, quotient and measure). Later on, in the early 1980s, Behr et al. built on Kieren's conceptualization and suggested a theoretical model linking the five subconstructs of fractions to the operations of fractions, fraction equivalence and problem solving. In the present study we utilized this theoretical model as a reference to investigate children's understanding of fractions. The case study has been conducted with 6 children consisted of 4th to 5th graders to detect how they understand factions, and how their understanding influence problem solving of subconstructs, operations of fractions and equivalence. Children's understanding of fractions was categorized into "part-whole", "ratio", "operator", "quotient", "measure" and "result of operations". Most children solved the problems based on their conceptual structure of fractions. However, we could not find the particular relationships between children's understanding of fractions and fraction operations or fraction equivalence, while children's understanding of fractions significantly influences their solutions to the problems of five subconstructs of fractions. We suggested that the focus of teaching should be on the concept of fractions and the meaning of each operations of fractions rather than computational algorithm of fractions.

  • PDF

Prospective Teachers' Understanding of the Constant π and their Knowledge of How to Prove its Constant Nature through the Concept of Linearity

  • Leung, K.C. Issic
    • Research in Mathematical Education
    • /
    • v.18 no.1
    • /
    • pp.1-29
    • /
    • 2014
  • When taught the precise definition of ${\pi}$, students may be simply asked to memorize its approximate value without developing a rigorous understanding of the underlying reason of why it is a constant. Measuring the circumferences and diameters of various circles and calculating their ratios might just represent an attempt to verify that ${\pi}$ has an approximate value of 3.14, and will not necessarily result in an adequate understanding about the constant nor formally proves that it is a constant. In this study, we aim to investigate prospective teachers' conceptual understanding of ${\pi}$, and as a constant and whether they can provide a proof of its constant property. The findings show that prospective teachers lack a holistic understanding of the constant nature of ${\pi}$, and reveal how they teach students about this property in an inappropriate approach through a proving activity. We conclude our findings with a suggestion on how to improve the situation.

Understanding the Arithmetic Mean: A Study with Secondary and University Students

  • Garcia Cruz, Juan Antonio;Alexandre Joaquim, Garrett
    • Research in Mathematical Education
    • /
    • v.12 no.1
    • /
    • pp.49-66
    • /
    • 2008
  • In this paper we present a cognitive developmental analysis of the arithmetic mean concept. This analysis leads us to a hierarchical classification at different levels of understanding of the responses of 227 students to a questionnaire which combines open-ended and multiple-choice questions. The SOLO theoretical framework is used for this analysis and we find five levels of students' responses. These responses confirm different types of difficulties encountered by students regarding their conceptualization of the arithmetic mean. Also we have observed that there are no significant differences between secondary school and university students' responses.

  • PDF

유연한 수학적 사고에 의한 개념의 동치성 비교 - 사례 연구 -

  • Lee, Byung-Soo
    • East Asian mathematical journal
    • /
    • v.27 no.4
    • /
    • pp.381-389
    • /
    • 2011
  • The flexible mathematical thinking - the ability to generate and connect various representations of concepts - is useful in understanding mathematical structure and variation in problem solving. In particular, the flexible mathematical thinking with the inventive mathematical thinking, the original mathematical problem solving ability and the mathematical invention is a core concept, which must be emphasized in all branches of mathematical education. In this paper, the author considered a case of flexible mathematical thinking with an inventive problem solving ability shown by his student via real analysis courses. The case is on the proofs of the equivalences of three different definitions on the concept of limit superior shown in three different real analysis books. Proving the equivalences of the three definitions, the student tried to keep the flexible mathematical thinking steadily.

The Effect on Forming Functional Concept by Teaching Function Based on Variable (변수에 의한 함수 지도가 함수개념의 형성에 미치는 효과)

  • 이덕호;길영순
    • Journal of the Korean School Mathematics Society
    • /
    • v.4 no.1
    • /
    • pp.103-114
    • /
    • 2001
  • The purpose of this study is to develop learning materials for functional concept on variable and to verify the effect of how well students could learn functional concept after they studied with those materials. To accomplish the purpose of this study, I developed learning materials and after teaching students with them. I have concluded the followings : First, there was little effect in teaching functional concept on variable between two experimental groups, whereas teaching functional concept had greater effect on forming functional concept in high level groups in those two experimental groups. Second, teaching functional concept on variable had little effect on students' understanding of functional concept and perfecting tables in Black box, graph, and mathematical problems, whereas there was much effect in students' understanding functional concept and solving relation formula, image, and range problems related to everyday life or general things. On the basis of the problems which appeared in the process of this study, the following can be suggested : First, we should develop learning materials fit for low level students so that they could understand functional concept. Second, we should continue to teach the basic problems like solving relation formula, image, and range, and understanding functional concept in graph until students are able to understand them exactly. Third, since the goals of Unit Function in a middle school textbook is to solve problems related to everyday life through functional thinking, there should be change in constructing systematic contents of Unit Function in a middle school textbook.

  • PDF

On the Applications of the Genetic Decomposition of Mathematical Concepts -In the Case of $Z_n$ in Abstract Algebra- (수학적 개념의 발생적 분해의 적용에 대하여 -추상대수학에서의 $Z_n$의 경우-)

  • Park Hye Sook;Kim Suh-Ryung;Kim Wan Soon
    • The Mathematical Education
    • /
    • v.44 no.4 s.111
    • /
    • pp.547-563
    • /
    • 2005
  • There have been many papers reporting that the axiomatic approach in Abstract Algebra is a big obstacle to overcome for the students who are not trained to think in an abstract way. Therefore an instructor must seek for ways to help students grasp mathematical concepts in Abstract Algebra and select the ones suitable for students. Mathematics faculty and students generally consider Abstract Algebra in general and quotient groups in particular to be one of the most troublesome undergraduate subjects. For, an individual's knowledge of the concept of group should include an understanding of various mathematical properties and constructions including groups consisting of undefined elements and a binary operation satisfying the axioms. Even if one begins with a very concrete group, the transition from the group to one of its quotient changes the nature of the elements and forces a student to deal with elements that are undefined. In fact, we also have found through running abstract algebra courses for several years that students have considerable difficulty in understanding the concept of quotient groups. Based on the above observation, we explore and analyze the nature of students' knowledge about $Z_n$ that is the set of congruence classes modulo n. Applying the genetic decomposition method, we propose a model to lead students to achieve the correct concept of $Z_n$.

  • PDF