본 고에서는 학교 현장에서 보다 쉽게 학생들의 메타인지적 접근이 가능할 수 있도록 선행 연구와 문헌 검토를 통하여 메타인지적 발문을 고안하고 이에 따라 학생들에게 훈련을 실시하였다. 이러한 목적은 메타인지가 수학적 사고 과정에 중요한 역할을 하는 도구임을 제안하고, 학생들의 메타인지 능력을 향상시킴으로써 수학적 사고력을 신장시킬 수 있다는 근거를 마련하는 것이다. 두 가지 사례를 들어, 문제해결 과정에서 메타인지적 활동의 훈련을 통하여 학생들의 수학적 사고 과정에서 나타나는 메타인지를 분석함으로서 자신의 문제 해결 과정에서 필요한 전략과 절차를 의식적으로 모니터링하며 조정하고 통제하려는 모습을 구체적인 사례와 함께 제시하였다.
Logic lays the foundation of Mathematics and the development of Mathematics is dependent on critical thinking. So it is important that school mathematics helps students develop their logical and critical thinking ability for both mathematics learning and problem solving in general. MINDSTORMS, a LEGO based programming activity kit, is an effective teaching and learning tool that can be used to enhance logical and critical thinking in students. This study focused on measuring the growth of students' ability to think logically and critically when they used MINDSTORMS activities to learn programming. In addition, we investigated how the students' logical and critical thinking changed from the MINDSTORMS learning experience. The study confirmed that the programming activities using MINDSTORMS help to enhance logical and critical thinking in students. The students attitude about logical and critical thinking became more positive and the activities helped to engage students to think logically and critically. This type of programming activities should be valuable in mathematics education and it should be included in a general mathematics curriculum.
오늘날 4차 산업혁명 시대에서 교육 패러다임의 급격한 변화로 인공지능(이하 AI) 교육이 점점 더 강조되고 있다. 2022 개정 교육과정은 미래사회에서 필요한 기초소양과 역량을 함양할 수 있는 AI 교육을 제시하고 있다. 본 연구에서는 초·중등학교 AI 교육에서 컴퓨팅 사고력 및 수학적 사고력 향상을 위해 다음과 같이 제언하고자 한다. 첫째, 컴퓨팅 사고력 교육 측면에서 학생들이 AI 개념과 원리를 잘 이해하고 실생활의 문제해결을 위한 능력을 키울 수 있는 교수 원리 연구가 필요하다. 둘째, AI를 이해하기 위한 수학적 사고력 측면의 요소로서 학생들이 수식을 이용한 알고리즘과 컴퓨터가 인간처럼 사고하는 과정에서 이루어지는 학습원리를 습득할 수 있는 교육 프로그램이 요구된다. 향후 연구 과제로 교수자와 학습자의 관계에서 나올 수 있는 역량있는 학습 효과성 분석을 통한 기대치에 관한 연구에 대하여 제시하였다.
This study is intended to investigate the effect on the development of multiplicative thinking and multiplicative ability by teaching repeated addition, rate, comparison, area-array, and combination problems. Two research questions are established: first, is there any difference of multiplicative thinking between the experimental group(the modeling of problem situation learning group) and the control group(the traditional learning group)\ulcorner Second, is there any difference of multiplicative ability between the experimental group and the control group\ulcorner The treatment process for the experimental group is based on modeling problem situations for nine lesson periods. In order to answer the research questions the chi-square analysis was used for the first research question and the t-test was used for the second one. The findings are summarized as follows: there is no significant difference of multiplicative thinking be1ween the experimental and the control group but there is significant difference of multiplicative ability.
Competent mathematics teachers need to implement the responsive teaching strategy to use student thinking to make instructional decisions. However, the responsive teaching strategy is difficult to implement, and limited research has been conducted in traditional classroom settings. Therefore, we need a better understanding of responsive teaching practices to support mathematics teachers adopting and implementing them in their classrooms. Responsive teaching strategy is connected with teachers' noticing practice because mathematics teachers' ability to notice classroom events and student thinking is connected with their interaction with students. In this regard, this review introduced and examined a study of the relationship between mathematics teachers' noticing and responsive teaching: In the context of teaching for all students' mathematical thinking conducted by Kim et al. (2017).
Deep comprehension of basic mathematical notions and concepts is a basic condition of a successful teaching. Some elements of algebraic thinking belong to the elementary school mathematics. The question "What stays the same and what changes?" link arithmetic problems with algebraic conception of variable. We have studied beliefs and comprehensions of future elementary school mathematics teachers on early algebra. Pre-service teachers from three academic pedagogical colleges deal with mathematical problems from the pre-algebra point of view, with the emphasis on changes and invariants. The idea is that the intensive use of non-formal algebra may help learners to construct a better understanding of fundamental ideas of arithmetic on the strong basis of algebraic thinking. In this article the study concerning arithmetic series is described. Considerable number of pre-service teachers moved from formulas to deep comprehension of the subject. Additionally, there are indications of ability to apply the conception of change and invariance in other mathematical and didactical contexts.
This research examined the Korean and American $6^{th}$ grade students' mathematical problem solving ability and methods via an intuitive thinking. For this, the survey research was used. The researcher developed the questionnaire which consists of problems with intuitive and algorithmic problem solving in number and operation, figure and measurement areas. 57 Korean $6^{th}$ grade students and 60 American $6^{th}$ grade students participated. The result of the analysis showed that Korean students revealed a higher percentage than American students in correct answers. But it was higher in the rate of Korean students attempted to use the algorithm. Two countries' students revealed higher rates in that they tried to solve the problems using intuitive thinking in geometry and measurement areas. Students in both countries showed the lower percentages of correct answer in problem solving to identify the impact of counterintuitive thinking. They were affected by potential infinity concept and the character of intuition in the problem solving process regardless of the educational environments and cultures.
본 연구는 학생들의 성취도 수준에 따라 구성된 동질 집단과 이질 집단에서 넓이 구하기 활동 중 나타나는 수학적 의사소통의 양태와 유추적 사고 과정을 분석함으로써 소집단내 의사소통이 유추적 사고 과정에 미치는 영향을 알아보는 것을 목적으로 하였다. 그 결과 동질 상위 집단은 개인 간 유사한 사고로 인해 의사소통의 필요를 느끼지 못하는 반면, 동질 중위 집단이나 하위 집단에서는 개인의 사고가 확장됨에 따라 의사소통이 점점 활발하게 일어났다. 이질집단의 경우는 상위권 학생이 의사소통을 주도해 감에 따라 하위권 학생의 참여횟수는 감소하였다. 그리고 평행사변형의 넓이를 구하는 활동(1차시 수업)으로부터 사다리꼴의 넓이를 구하는 활동(2차시 수업)으로 어떻게 유추가 일어날 수 있는지 그 사고 과정을 분석한 결과 소집단내 의사소통은 다른 학생들의 유추적 사고를 유발하며 그로인해 Rattermann의 유비추론 사고 과정 단계를 확장해 가는 것을 확인할 수 있었다.
수학 영재들은 타고난 수학적 소질과 적성, 지적인 능력과 창의성을 바탕으로 참신한 과제에 대한 도전적이고 창조적인 호기심을 가지고 있다. 영재아들의 창의적인 사고력을 길러주기 위해서는 다양한 방법으로 문제 해결에 접근하게 하고 전략적 시도를 할 수 있도록 만들어주어야 한다. 이런 관점에서 볼 때 개방적이고 비정형적인 문제를 영재 교육프로그램의 과제로 선정하는 것은 바람직하다 할 수 있다. 본 논문에서는 다양한 유형의 개방형 문제를 구안하고, 이를 토대로 영재 학급에서 학습 활동을 전개한 후, 문제해결 과정에서 영재아들의 수학적 사고 능력의 특성과 문제 해결 전략 사례를 분석하여, 개방형 과제를 활용한 초등학교 영재 수업에 관한 시사점을 얻고자 하였다.
This research's purpose is to investigate follows. 1. How do middle school teachers recognize the mathematical communication globally? 2. If we classify the modes of mathematical communication as written, spoken, graphic and active ones, how much do teachers use them and how do the students' communication ability come as teachers judge? 3. What are teachers' thinking, the present condition and the future indication for the application of mathematical communication with computer? 4. Do teachers evaluate their students' communication ability? If then, what is the assessment rubric of student's communication ability? The results are analyzed by frequency analysis including percentile and free writings are arranged by similar responses. The result of this study is that global recognition for mathematical communication, current state for students' concrete performance of mathematical communication, and assessment of mathematical communication & proposals are very lacking.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.