• 제목/요약/키워드: Mathematical Knowledge in Teaching

검색결과 325건 처리시간 0.018초

현실적 수학교육에 대한 고찰 - 초등학교의 알고리듬 학습을 중심으로 - (A Study of Realistic Mathematics Education - Focusing on the learning of algorithms in primary school -)

  • 정영옥
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제9권1호
    • /
    • pp.81-109
    • /
    • 1999
  • This study aims to reflect the basic principles and teaching-teaming principles of Realistic Mathematics Education in order to suppose an way in which mathematics as an activity is carried out in primary school. The development of what is known as RME started almost thirty years ago. It is founded by Freudenthal and his colleagues at the former IOWO. Freudenthal stressed the idea of matheamatics as a human activity. According to him, the key principles of RME are as follows: guided reinvention and progressive mathematisation, level theory, and didactical phenomenology. This means that children have guided opportunities to reinvent mathematics by doing it and so the focal point should not be on mathematics as a closed system but on the process of mathematisation. There are different levels in learning process. One should let children make the transition from one level to the next level in the progress of mathematisation in realistic contexts. Here, contexts means that domain of reality, which in some particular learning process is disclosed to the learner in order to be mathematised. And the word of 'realistic' is related not just with the real world, but is related to the emphasis that RME puts on offering the students problem situations which they can imagine. Under the background of these principles, RME supposes the following five instruction principles: phenomenological exploration, bridging by vertical instruments, pupils' own constructions and productions, interactivity, and interwining of learning strands. In order to reflect how to realize these principles in practice, the teaming process of algorithms is illustrated. In this process, children follow a learning route that takes its inspiration from the history of mathematics or from their own informal knowledge and strategies. Considering long division, the first levee is associated with real-life activities such as sharing sweets among children. Here, children use their own strategies to solve context problems. The second level is entered when the same sweet problems is presented and a model of the situation is created. Then it is focused on finding shortcomings. Finally, the schema of division becomes a subject of investigation. Comparing realistic mathematics education with constructivistic mathematics education, there interaction, reflective thinking, conflict situation are many similarities but there are alsodifferences. They share the characteristics such as mathematics as a human activity, active learner, etc. But in RME, it is focused on the delicate balance between the spontaneity of children and the authority of teachers, and the development of long-term loaming process which is structured but flexible. In this respect two forms of mathematics education are different. Here, we learn how to develop mathematics curriculum that respects the theory of children on reality and at the same time the theory of mathematics experts. In order to connect the informal mathematics of children and formal mathematics, we need more teachers as researchers and more researchers as observers who try to find the mathematical informal notions of children and anticipate routes of children's learning through thought-experiment continuously.

  • PDF

수학적 문제해결에서 Productive Struggle(생산적인 애씀)에 관한 연구 (A Study on Productive Struggle in Mathematics Problem Solving)

  • 김소민
    • 한국학교수학회논문집
    • /
    • 제22권3호
    • /
    • pp.329-350
    • /
    • 2019
  • Productive struggle(생산적인 애씀)이란 쉽게 풀리지는 않지만 호기심과 과제 집착을 가져올 수 있는 도전적인 문제에 대하여 해결 전략을 궁리하며 문제의 기저를 이루는 수학적 개념의 이해와 문제 해결을 향해가는 학생의 노력 과정이다. 즉, 수학적 개념을 깊게 이해하거나 문제를 해결하기 위해 끈질기게 궁리하고 스스로 해결책을 찾기 위해 노력하는 것을 의미한다. Productive struggle이 학생들의 개념이해를 바탕으로 한 수학 학습의 핵심요소로 떠오르면서, 효과적인 수학 교수를 위한 NCTM(2014)의 행동 원리 중 하나로 제시되었다. 그러나 선행연구의 대부분이 학생의 productive struggle에 집중되어 있어, 본 연구에서는 예비 수학 교사들이 비정형적 수학 문제를 해결하는 과정에서 겪는 productive struggle에 초점을 맞추었다. Polya의 문제해결 4단계를 분석틀로 사용하여 문제를 해결하는 동안 각 단계별로 예비 수학 교사가 어떤 productive struggle을 보이는지 분석하였다. 분석 결과, 새로운 유형의 문제를 접했을 때, 예비 수학 교사들의 제한된 선행지식이 문제의 이해부터 계획수립 및 실행 단계까지 productive struggle을 야기하며 문제해결 과정에 큰 영향을 미친다는 것을 발견했다. 또한, 예비 수학 교사들이 productive struggle을 겪으며 문제를 해결해봄으로써 고군분투 끝에 얻게 되는 학습의 즐거움을 느끼게 되고, 이러한 경험은 미래의 학생들에게 효과적인 수학 학습을 위해 productive struggle을 지원할 수 있도록 격려하는 역할을 하였다. 따라서 productive struggle를 통해 수학 학습에 몰두해보는 기회를 가짐으로써 예비 수학 교사들이 미래의 수학교육전문가로서의 직업적 전문성을 키우는데 도움이 될 것으로 기대된다.

삼각형의 외심, 내심의 정의에 관한 고찰 (A Study on the Definition of a Circumcenter and an Incenter of Triangle)

  • 전영배;강정기;노은환
    • 한국학교수학회논문집
    • /
    • 제14권3호
    • /
    • pp.355-375
    • /
    • 2011
  • 본 연구는 삼각형의 외심, 내심의 기능적 이해를 돕기 위한 목적으로 수행되었으며, 그들 의 정의에 대한 교수 학습 상황에 대한 도움을 제공하고자 하였다. 삼각형의 외심, 내심의 정의는 현 교과서에서 3가지로 분류될 수 있으며, 이들을 각각 구성에 초점을 맞춘 정의, 의미에 초점을 맞춘 정의, 구성과 의미 모두에 초점을 맞춘 정의로 구분하였다. 그리고 이들 각 정의가 갖는 맥락, 의도, 목적에 대한 이해를 도모하고자 삼각형의 외심, 내심의 각 정의 에 대한 특징을 분석하였다. 구성에 초점을 맞춘 정의는 개념의 실체와 무모순성을 강조한 정의로 학습자가 이 개념이 무모순임을 이해하기 위한 목적으로 선택된 것이라는 것을 분석 해 내었다. 한편, 이 정의는 다각형의 외심, 내심의 의미를 고려하여 정의를 하였으며, 이러한 사실로 미루어 볼 때 삼각형의 외심, 내심은 다각형의 외심, 내심과 연계된 지도가 필요함을 확인하였다. 또한 이 정의는 용어와 정의의 괴리로부터 발생하는 개념 혼란으로 인해 정의에 대한 숙지가 어렵다는 것을 알 수 있었다. 의미에 초점을 맞춘 정의는 개념 정의와 개념 이미지는 일치하여 정의를 숙지하는 것이 용이하지만, 개념의 실체를 발견하고자 할 때 구성이 어려운 상황을 연출한다는 점을 알 수 있었다. 한편, 결과적 지식이지만 발생적 맥락 을 간직한 정의이기 때문에 이러한 점을 고려하면 정의에 대한 지도는 개념 발생 맥락 및 과정이 분리되어 지도되어서는 안 된다는 점을 확인하였다. 구성과 의미 모두에 초점을 맞춘 정의는 시작점이 모호할 뿐 만 아니라 기존에 제시된 정의와는 다른 형태이기 때문에 개념 정의에 대한 인식이 어려울 수 있음을 확인하였다. 본 연구의 결과가 수학 교육 현장에서 삼 각형의 외심, 내심의 정의에 대한 이해를 향상시키는데 도움이 되길 바란다.

  • PDF

창의적 융합교육을 위한 무게중심 프로그램 개발과 적용사례 연구 (A Study on the Effects of Creative STEAM System Given by Center of Gravity Experiment)

  • 김수금;유시규;김선배
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제24권3호
    • /
    • pp.333-357
    • /
    • 2014
  • 본 연구에서 제시하는 무게중심 확인실험 프로그램개발은 2013년 '동국대학교 과학영재교육원'에서 융합형 영재프로그램으로 개발되어 초등 영재학생 10개 집단 120명과 중등수학영재학생 24명을 대상으로 진행되었다. 무게중심 확인실험은 한국 과학창의재단에서 제시하는 융합형인재교육(STEAM) 학습준거 틀에서 수행된 3단계 과정을 이행하여 창의적 융합교육의 효과를 극대화하였다. 본 연구가 갖는 3가지 특징은 다음과 같다. 첫째, 연구에서 새롭게 개발된 무게중심 확인실험은 수학과 물리가 융합된 교육방식이다. 둘째, 실험에 사용되는 모형은 학생들의 능동적 활동으로 창의적인 모형 설계가 가능하다. 셋째, 무게중심 확인실험 프로그램은 학습 능력에 따라 수준별 수업으로서 전환이 가능하다. 위에서 제시한 특성들을 바탕으로 무게중심 확인실험을 통하여 창의적 융합교육의 효과를 극대화시킨다. 설문조사 결과는 주어진 지식을 단순 암기하는 학습에서 벗어나 실험에 필요한 배경지식 이해, 실험 설계, 실험 과정, 실험 결과의 단계를 거쳐 학습된다. 설문조사와 학생들의 실험 후 토의 결과, 현재 수학 또는 과학 교육과정이 제시하는 무게중심 학습과 비교하여, 새롭게 개발된 융합형 프로그램이 교육의 효과가 뛰어남을 보여 준다. 본 연구는 수학이 다른 교과영역과 융합되는 새로운 융합형 교육방식을 제시한다. 특히 무게중심을 찾고 이를 확인하는 새로운 형태를 제시한다. 결론적으로 교수자와 학습자가 모두 만족할 수 있는 새로운 무게중심 교육의 틀을 제시한다.

  • PDF

초등학교에서 속력 관련 단원의 교육과정 및 교과서 내용 구성에 관한 논의 (Composition of Curriculums and Textbooks for Speed-Related Units in Elementary School)

  • 전영석
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제41권4호
    • /
    • pp.658-672
    • /
    • 2022
  • 초등학교 과학에서 속력 관련 단원의 독특한 교수·학습 곤란은 주로 학생의 수학적 사고력 및 속력의 측정과 관련된 절차적 지식의 부족에 기인한 것으로, 교육과정 및 교과서는 이점을 고려하여 구성할 필요가 있다. 속력 단원의 교육과정 및 교과서 내용 구성과 관련된 시사점을 얻기 위하여 2007 개정 교육과정부터 2015 개정 교육과정까지 3개 교육과정 및 이에 따른 교과서의 속력 관련 단원의 구성 체계와 내용을 살펴보고, 선행 연구에 비추어 적절성을 분석하였다. 분석 결과를 통해 현재의 내용 구성은 이동 거리와 시간 및 속력 사이의 입체적인 관계를 파악하기 보다는 암기에 의한 기계적 알고리즘을 통해 물체의 속력만을 계산할 위험이 있어 이중 수직선과 같은 시각화 모형 및 간단한 수를 활용하여 속력의 의미를 단계적으로 학습할 수 있도록 재구성할 필요가 있다는 점을 밝혔다. 또한 조사를 통해 얻은 자료를 이용하여 물체의 운동을 해석하는 활동보다는 실제 운동하는 물체의 이동 거리와 걸린 시간을 직접 측정하여 그래프로 나타내고 분석하도록 함으로써 과정 기능 등 탐구 수행 능력을 향상시키는 것의 필요성에 대해 논의하였다. 마지막으로 적용 차시에서 현재의 교육과정과 교과서에서는 일상생활과의 연계를 강조하고 있지만 단원의 주된 학습 내용인 운동학과는 다소 다르게 동역학과 관련된 내용을 다루고 있어 학습한 내용을 익히고 활용할 수 있도록 속력과 관련된 사례를 중심으로 내용을 새롭게 구성할 필요가 있다는 점을 밝혔다. 새 교육과정 및 교과서에서는 학습하기 어렵고 지도하기 까다로운 내용을 제외하기 보다는 과학의 가치를 깨닫고 과학 학습을 향유할 수 있도록 핵심 주제를 체계적으로 깊이 학습할 기회를 제공할 것을 제안한다.