• Title/Summary/Keyword: Maternal-fetal interface

Search Result 8, Processing Time 0.025 seconds

Multi-Layered Mechanisms of Immunological Tolerance at the Maternal-Fetal Interface

  • Jin Soo Joo;Dongeun Lee;Jun Young Hong
    • IMMUNE NETWORK
    • /
    • v.24 no.4
    • /
    • pp.30.1-30.16
    • /
    • 2024
  • Pregnancy represents an immunological paradox where the maternal immune system must tolerate the semi-allogeneic fetus expressing paternally-derived Ags. Accumulating evidence over decades has revealed that successful pregnancy requires the active development of robust immune tolerance mechanisms. This review outlines the multi-layered processes that establish fetomaternal tolerance, including the physical barrier of the placenta, restricted chemokine-mediated leukocyte trafficking, lack of sufficient alloantigen presentation, the presence of immunosuppressive regulatory T cells and tolerogenic decidual natural killer cells, expression of immune checkpoint molecules, specific glycosylation patterns conferring immune evasion, and unique metabolic/hormonal modulations. Interestingly, many of the strategies that enable fetal tolerance parallel those employed by cancer cells to promote angiogenesis, invasion, and immune escape. As such, further elucidating the mechanistic underpinnings of fetal-maternal tolerance may reciprocally provide insights into developing novel cancer immunotherapies as well as understanding the pathogenesis of gestational complications linked to dysregulated tolerance processes.

Differential expression of the metastasis suppressor KAI1 in decidual cells and trophoblast giant cells at the feto-maternal interface

  • Koo, Tae Bon;Han, Min-Su;Tadashi, Yamashita;Seong, Won Joon;Choi, Je-Yong
    • BMB Reports
    • /
    • v.46 no.10
    • /
    • pp.507-512
    • /
    • 2013
  • Invasion of trophoblasts into maternal uterine tissue is essential for establishing mature feto-maternal circulation. The trophoblast invasion associated with placentation is similar to tumor invasion. In this study, we investigated the role of KAI1, an anti-metastasis factor, at the maternal-fetal interface during placentation. Mouse embryos were obtained from gestational days 5.5 (E5.5) to E13.5. Immunohistochemical analysis revealed that KAI1 was expressed on decidual cells around the track made when a fertilized ovum invaded the endometrium, at days E5.5 and E7.5, and on trophoblast giant cells, along the central maternal artery of the placenta at E9.5. KAI1 in trophoblast giant cells was increased at E11.5, and then decreased at E13.5. Furthermore, KAI1 was upregulated during the forskolin-mediated trophoblastic differentiation of BeWo cells. Collectively, these results indicate that KAI1 is differentially expressed in decidual cells and trophoblasts at the maternal-fetal interface, suggesting that KAI1 prevents trophoblast invasion during placentation.

Spatiotemporal expression and regulation of peptidase inhibitor 3 and secretory leukocyte protease inhibitor at the maternal-fetal interface in pigs

  • Soohyung Lee;Inkyu Yoo;Yugyeong Cheon;Hakhyun Ka
    • Animal Bioscience
    • /
    • v.36 no.7
    • /
    • pp.1034-1043
    • /
    • 2023
  • Objective: Two serine protease inhibitors, peptidase inhibitor 3 (PI3) and secretory leukocyte protease inhibitor (SLPI), play important roles in protease inhibition and antimicrobial activity, but their expression, regulation, and function at the maternal-fetal interface in pigs are not fully understood. Therefore, we determined the expression and regulation of PI3 and SLPI in the endometrium throughout the estrous cycle and at the maternal-fetal interface in pigs. Methods: Endometrial tissues during the estrous cycle and pregnancy, conceptus tissues during early pregnancy, and chorioallantoic tissues during mid to late pregnancy were obtained, and the expression of PI3 and SLPI was analyzed. The effects of the steroid hormones estradiol-17β (E2) and progesterone (P4) on the expression of PI3 and SLPI were determined in endometrial explant cultures. Results: PI3 and SLPI were expressed in the endometrium during the estrous cycle and pregnancy, with higher levels during mid to late pregnancy than during the estrous cycle and early pregnancy. Early-stage conceptuses and chorioallantoic tissues during mid to late pregnancy also expressed PI3 and SLPI. PI3 protein and SLPI mRNA were primarily localized to endometrial epithelia. In endometrial explant cultures, the expression of PI3 was induced by increasing doses of P4, and the expression of SLPI was induced by increasing doses of E2 and P4. Conclusion: These results suggest that the PI3 and SLPI expressed in the endometrium and conceptus tissues play an important role in antimicrobial activity for fetal protection against potential pathogens and in blocking protease actions to allow epitheliochorial placenta formation.

Immunologic Aspects at the Feto-Maternal Interface (태아모체간 계면에서의 면역학적 측면)

  • 정인배
    • Development and Reproduction
    • /
    • v.5 no.2
    • /
    • pp.93-100
    • /
    • 2001
  • Precise mechanism by which the fetus can escape from mother's immune rejection is not well understood yet over the last 50 years. The clarification of immune mechanism at the feto-maternal interface is very important, because this can be a common pathogenesis of various pathologic conditions including spontaneous abortion, habitual abortion fetal growth restriction preeclampsia, implantation failure after assisted reproductive techniques, and fetal death. In this review, current hypothetical contents were described with the priority of importance: 1) The center of this mechanism is cross-talk between the expression of HLA-C, E, G on the extravillous cytotrophoblasts and their receptors on decidual NK cell, 2) immunomodulation, 3) innate immunity is the main immunologic mechanism, 4) various mechanisms besides HLA system(eq. complement) may be associated. The overall balance of immunomodulation among these mechanisms should result in the outcome of each pregnancy. Further researches regarding the regulation of HLA system, roles of cytokines, complements should be followed in the future.

  • PDF

Decorin: a multifunctional proteoglycan involved in oocyte maturation and trophoblast migration

  • Park, Beom Seok;Lee, Jaewang;Jun, Jin Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.4
    • /
    • pp.303-310
    • /
    • 2021
  • Decorin (DCN) is a proteoglycan belonging to the small leucine-rich proteoglycan family. It is composed of a protein core containing leucine repeats with a glycosaminoglycan chain consisting of either chondroitin sulfate or dermatan sulfate. DCN is a structural component of connective tissues that can bind to type I collagen. It plays a role in the assembly of the extracellular matrix (ECM), and it is related to fibrillogenesis. It can interact with fibronectin, thrombospondin, complement component C1, transforming growth factor (TGF), and epidermal growth factor receptor. Normal DCN expression regulates a wide range of cellular processes, including proliferation, migration, apoptosis, and autophagy, through interactions with various molecules. However, its aberrant expression is associated with oocyte maturation, oocyte quality, and poor extravillous trophoblast invasion of the uterus, which underlies the occurrence of preeclampsia and intrauterine growth restriction. Spatiotemporal hormonal control of successful pregnancy should regulate the concentration and activity of specific proteins such as proteoglycan participating in the ECM remodeling of trophoblastic and uterine cells in fetal membranes and uterus. At the human feto-maternal interface, TGF-β and DCN play crucial roles in the regulation of trophoblast invasion of the uterus. This review summarizes the role of the proteoglycan DCN as an important and multifunctional molecule in the physiological regulation of oocyte maturation and trophoblast migration. This review also shows that recombinant DCN proteins might be useful for substantiating diverse functions in both animal and in vitro models of oogenesis and implantation.

Detrimental effects of lipopolysaccharide on the attachment and outgrowth of various trophoblastic spheroids on human endometrial epithelial cells

  • Kim, Wontae;Choi, Jungwon;Yoon, Hyejin;Lee, Jaewang;Jun, Jin Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.2
    • /
    • pp.132-141
    • /
    • 2021
  • Objective: Lipopolysaccharide (LPS) from Gram-negative bacteria causes poor uterine receptivity by inducing excessive inflammation at the maternal-fetal interface. This study aimed to investigate the detrimental effects of LPS on the attachment and outgrowth of various types of trophoblastic spheroids on endometrial epithelial cells (ECC-1 cells) in an in vitro model of implantation. Methods: Three types of spheroids with JAr, JEG-3, and JAr mixed JEG-3 (JmJ) cells were used to evaluate the effect of LPS on early implantation events. ECC-1 cells were treated with LPS to mimic endometrial infection, and the expression of inflammatory cytokines and adhesion molecules was analyzed by quantitative real-time polymerase chain reaction and western blotting. The attachment rates and outgrowth areas were evaluated in the various trophoblastic spheroids and ECC-1 cells treated with LPS. Results: LPS treatment significantly increased the mRNA expression of inflammatory cytokines (CXCL1, IL-8, and IL-33) and decreased the protein expression of adhesion molecules (ITGβ3 and ITGβ5) in ECC-1 cells. The attachment rates of JAr and JmJ spheroids on ECC-1 cells significantly decreased after treating the ECC-1 cells with 1 and 10 ㎍/mL LPS. In the outgrowth assay, JAr spheroids did not show any outgrowth areas. However, the outgrowth areas of JEG-3 spheroids were similar regardless of LPS treatment. LPS treatment of JmJ spheroids significantly decreased the outgrowth area after 72 hours of coincubation. Conclusion: An in vitro implantation model using novel JmJ spheroids was established, and the inhibitory effects of LPS on ECC-1 endometrial epithelial cells were confirmed in the early implantation process.