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ABSTRACT

Pregnancy represents an immunological paradox where the maternal immune system must 
tolerate the semi-allogeneic fetus expressing paternally-derived Ags. Accumulating evidence 
over decades has revealed that successful pregnancy requires the active development of 
robust immune tolerance mechanisms. This review outlines the multi-layered processes that 
establish fetomaternal tolerance, including the physical barrier of the placenta, restricted 
chemokine-mediated leukocyte trafficking, lack of sufficient alloantigen presentation, the 
presence of immunosuppressive regulatory T cells and tolerogenic decidual natural killer 
cells, expression of immune checkpoint molecules, specific glycosylation patterns conferring 
immune evasion, and unique metabolic/hormonal modulations. Interestingly, many of the 
strategies that enable fetal tolerance parallel those employed by cancer cells to promote 
angiogenesis, invasion, and immune escape. As such, further elucidating the mechanistic 
underpinnings of fetal-maternal tolerance may reciprocally provide insights into developing 
novel cancer immunotherapies as well as understanding the pathogenesis of gestational 
complications linked to dysregulated tolerance processes.
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INTRODUCTION

The immune system is a specialized defense system that protects our body from invading 
foreign molecules and pathogens. In particular, B cells and T cells acquire the ability 
to distinguish self from non-self Ags through selection procedures during lymphocyte 
development. Thus, early studies suggested that pregnancy is an immunological paradox 
since the fetus of a pregnant mother carries semi-allogeneic Ags derived from paternally 
transmitted genes, and it would be conceivable for the maternal immune system to attack this 
allogeneic fetus (1). However, this catastrophic event does not occur in a normal pregnancy. 
Peter Medawar, who was interested in this subject, made a unique discovery and received the 
Nobel Prize for his work. Highly influenced by Macfarlane Burnet’s theory and the work of 
Ray D. Owen, Medawar and his colleagues performed tissue graft experiments in a mouse 
model. They inoculated cells from one strain of mouse into a developing fetus of a different 
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strain. Remarkably, they found that skin grafts from the first strain could then be accepted 
by the second strain, even in adulthood, when they would have been typically rejected (2). 
This phenomenon was termed immunological tolerance by Medawar and Burnet, who shared 
the Nobel Prize in 1960. While Medawar’s work did not directly explain the mechanisms 
governing maternal tolerance of the semi-allogeneic fetus, it revealed the principle of 
acquired immunological tolerance for the first time. 

REQUIREMENT OF ACTIVE IMMUNE TOLERANCE 
DEVELOPMENT FOR SUCCESSFUL PREGNANCY
With Burnet’s clonal selection theory and Medawar’s work, it was once thought that self-
reactive clones were deleted in utero. However, later studies found that this is not the case, 
although the core principles of the clonal selection theory remain valid. Contrary to the 
initial postulation, it became evident that neither the uterus nor the fetus itself is intrinsically 
special; instead, active development of immune tolerance is required. For example, an 
early suggestion was that the maternal immune system remains inactive during pregnancy. 
However, this idea was negated by findings that fetal tissues transplanted into pregnant 
female rats were rejected as rapidly as organ allografts (3), demonstrating that fetal tissue 
itself does not possess unique properties for evading maternal immunity. Other studies 
showed that the uterus is not an immune-privileged site, as skin grafts syngeneic to the 
fetus were rejected when implanted in the uterus (4). In humans, immune reactivity toward 
fetal tissue is possible in rare cases. In rhesus (Rh) disease, Rh-negative mothers carrying 
Rh-positive fetuses develop Abs against the Rh Ag after exposure to Rh-positive blood cells. 
During subsequent pregnancies with Rh-positive fetuses, these Abs can cross the placenta 
and attack the fetus, leading to complications (5). Collectively, these reports underscore that 
active immune tolerance mechanisms are essential for successful pregnancy.

Now even more extensive experimental evidence has accumulated supporting the 
requirement for active immune tolerance development during pregnancy. Studies in rodent 
models clearly demonstrate that fetal-reactive immunity can arise but is actively suppressed 
in normal pregnancy. Rare cases of high abortion rates during pregnancy between CBA 
females and DBA males originate from semi-allogeneic immune responses, leading to 
complement activation and dysregulated angiogenesis (6-8). In this abortion-prone mating 
combination, inhibiting CD80 and CD86 signaling prevents maternal rejection of the 
allogeneic fetus (9), suggesting the involvement of the adaptive immune system. This idea is 
markedly illustrated by models utilizing defined fetal Ags like ovalbumin (OVA) (10). When a 
female mouse is pregnant with an OVA-expressing fetus, the fetal Ag sheds into the maternal 
circulation (11), where it is captured by maternal Ag-presenting cells (APCs) and presented 
to T cells. However, the T cells recognizing this fetal alloantigen become inactivated to 
anergy state (10). In a setting where all maternal CD4+ T cells are specific for a fetal Ag, 
achieved by breeding OT-II females with OVA-expressing males, tolerance to the fetus is 
maintained (12). This is due to the deletion of fetal-Ag-specific CD4+ T cells, downregulation 
of the TCR, and upregulation of immune checkpoint molecules like PD-1 and CTLA-4 (12). 
Moreover, fetal-Ag-specific Tregs are increased in this setting (12). However, the tolerogenic 
effects are less effective in CD8+ T cells, as fetal loss is observed when OT-I females are bred 
with OVA-expressing males (12). Given the importance of Tregs in suppressing immune 
responses against fetal Ags (13), the lack of Tregs may permit the cytotoxic effects of CD8+ 
T cells toward fetal Ags in OT-I mice. Collectively, these findings indicate that fetal Ags can 
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be present in the maternal system, underscoring the necessity of active immune tolerance 
development for successful pregnancy.

MECHANISMS OF IMMUNOLOGICAL TOLERANCE 
DEVELOPMENT DURING PREGNANCY
Studies have revealed multi-layered mechanisms that protect the semi-allogeneic fetus 
from maternal immune system (Fig. 1). Here we present the key players in this process, 
focusing on the placenta’s barrier properties, immune evasion of trophoblasts by absence 
of Ag presentation, as well as the roles of various maternal immune cells, such as natural 
killer cells, Tregs, and additional molecular features that contribute to immune tolerance at 
maternal-fetal interface. We will also discuss how this knowledge could be translated into 
clinical applications.

Physical barrier
The fetus is separated from the mother by cellular barriers in the placenta, although the 
histological structure of the placenta varies across mammalian species. The human placenta 
is a hemochorial placenta, in which fetal trophoblasts are bathed in maternal blood (14). The 
outermost layer, the syncytiotrophoblast (SCT), functions as a cellular barrier and controls 
the exchange of substances between the fetus and mother (15). Despite the presence of a 
small number of fetal and maternal cells in each other’s compartments, the placenta acts 
as a major barrier, limiting the transmission of semi-allogeneic fetal Ags to the mother 
or vice versa. Previous studies on transplacental cell passage have shown that only a small 
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Figure 1. Overview of mechanisms of immunological tolerance at the maternal-fetal interface. While the semi-
allogeneic fetal cells and antigens are continuously exposed to the mother, the immune system in maternal-fetal 
interface promotes a tolerogenic environment for the fetus. Placental barrier restricts the transfer of fetal antigen 
to maternal circulation. Maternal immune cells including dNKs, antigen-presenting cells, monocytes, and T cells 
exhibit regulatory phenotype during gestation. Additionally, deprivation of immune-activating molecules such 
as chemokines and MHC antigens protects the fetus from maternal immune attack. The glycosylation process in 
placenta also favors tolerance by suppressing the maternal immune system.



percentage of cells may be transferred across the placenta (16-18). During gestation, maternal 
cells are found in fetal tissues such as the thymus, spleen, and liver (19). While the specific 
population of transferred cells was not identified, it appears that leukocyte transfer is more 
restricted than that of erythrocytes (18). Additionally, although maternal immune systems 
may be primed to fetal Ags, this is not a common occurrence in normal human pregnancies 
(20). Experiments in mice have further revealed that sensitization to fetal alloantigens 
can occur, but the fetus is not rejected due to inhibited access to the maternal immune 
system (21,22). These findings further underscore the pivotal role of the placental barrier in 
establishing maternal-fetal immune tolerance.

The placenta also functions as an immunoabsorbent for maternal Abs specific to fetal Ags 
(23). This phenomenon is not dependent on the binding of paternal Ag-specific Abs to 
other maternal organs or Fc receptor-mediated binding of Abs in the placenta but is instead 
dependent on the antigenic specificity of the F(ab')2 Ab fragments (23,24). Thus, the placenta 
serves as a barrier that not only passively restricts contact between the fetus and mother but 
also actively blocks maternal immune attacks against the fetus.

Immune barrier: chemokines
During mammalian pregnancy, maternal immune cells are recruited to the maternal-
fetal interface and actively regulate specialized immune responses between mother and 
fetus. Additionally, the placenta expresses a wide range of chemokines and their receptors 
(25). However, activation of chemokine signaling may recruit and dysregulate maternal 
leukocytes and trigger inflammatory responses within the placenta. Thus, the proper 
regulation of chemokine and chemokine receptor expression appears to be necessary for a 
successful pregnancy.

One chemokine receptor expressed in the placenta with a protective role against placental 
inflammation is D6, also known as atypical chemokine receptor 2 (26-28). D6 is expressed 
in extravillous trophoblasts (EVTs) and on the apical side of SCTs, where it scavenges 
the inflammatory CCL2. Genetic ablation of D6 in pregnant mice results in increased 
levels of inflammatory chemokines and leukocyte infiltration into the placenta under 
inflammatory conditions (26). Moreover, the loss of D6 is associated with structural defects 
in the placenta and an increased incidence of adverse pregnancy outcomes (27). Notably, 
trophoblastic D6 prevents CCL2 from entering the embryonic circulation, suggesting the 
‘compartmentalization’ of maternal chemokines within the decidua (28). Interestingly, Nancy 
et al. (29) demonstrated that chemokine gene silencing in decidual stromal cells (DSCs) 
inhibits the infiltration of T cells into the decidua. The chemokine expression in DSCs was 
epigenetically repressed by H3 trimethyl lysine 27 histone on the promoters of gene Cxcl9, 
Cxcl10, and Ccl5. The ectopic expression of CXCL9 and CCL5 in the decidua, leading to the 
infiltration of CD3+ T cells, further supports the notion that the lack of chemokine expression 
restricts T cell accumulation in this region (29).

Of note, aberrant regulation of placental chemokines is associated with adverse pregnancy 
outcomes (30,31). Clinical studies on pre-eclamptic women have revealed that the scavenging 
of CCL2 is reduced due to impaired D6 function in the placenta of these patients (30). 
Furthermore, the inflammatory chemokine CX3CL1, which is expressed by SCTs, is increased 
in the placenta of patients with pre-eclampsia (PE), and its expression level positively 
correlates with clinical and pathological parameters of PE (31).
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Taken together, these findings highlight the critical importance of tightly regulating 
chemokine expression and function at the maternal-fetal interface to maintain an immune-
privileged environment during pregnancy. Further studies are needed to investigate the 
regulation of additional chemokines and their receptors at the maternal-fetal interface.

Insufficient alloantigen presentation
MHC molecules present peptides on the cell surface to initiate adaptive immune responses. 
MHC class I molecules are expressed by all nucleated cells and present Ags of cytosolic 
origin, whereas MHC class II molecules are found primarily on specialized APCs and 
present exogenously derived Ags (32). Notably, in addition to their Ag-presenting capacity, 
MHC molecules function as determinants of immunological self and non-self. These MHC 
molecules are recognized by the adaptive immune system and allogenic cells expressing non-
self MHC molecules are rejected (33). Since the fetus possesses semi-allogeneic MHC and 
antigenic peptides that may stimulate the maternal immune system, restricting alloantigen 
presentation is essential for maintaining fetomaternal tolerance.

Among MHC class I molecules, non-classical HLA-G Ag is specifically expressed by 
trophoblasts during gestation (34,35). In fact, trophoblasts are devoid of most of MHC Ags 
but EVTs which invade maternal decidual tissue and encounter maternal immune cells 
express high levels of HLA-G (35). HLA-G in trophoblasts is present as a homodimer that 
preferentially binds Ig-like transcripts (ILTs) on decidual APCs (36). This interaction induces 
a regulatory phenotype in decidual myelomonocytic cells, suppressing T cell responses 
and impairing Ag presentation via MHC class II molecules (37). NK cells also express other 
inhibitory receptors for HLA-G Ag such as killer cell Ig-like receptor (KIR) 2DL4 (38). Thus, 
the specific expression of HLA-G with the absence of classical MHC class I molecules, HLA-A 
and HLA-B in EVTs promotes tolerogenic microenvironment in maternal-fetal interface. 
Alongside HLA-G expression, EVTs express other MHC class I molecules HLA-C and 
HLA-E. Unlike HLA-A and HLA-B, which are major TCR ligands, HLA-C in EVTs does not 
activate maternal T cells but binds KIRs expressed on uterine NK cells, thereby promoting 
EVT function (39,40). Furthermore, while expression of MHC class I proteins is regulated 
by NOD-like receptor family CARD domain containing 5 (NLRC5), the master regulator of 
MHC class I molecules, expression of HLA-C is regulated by transcription factor E74 like 
ETS transcription factor 3 (ELF3) independently of NLRC5 (41). Expanding on these findings 
to clinical relevance, the expression of HLA-G in placenta and its release into maternal 
circulation is impaired in PE patients while expression of HLA-B is significantly elevated in 
these patients (42,43).

The absence of MHC class II Ag expression is another unique feature of placental immunity 
(44-46). It was initially assumed that trophoblasts failed to express class II transactivator 
(CIITA) gene due to methylation of IFN-γ inducible promoter of CIITA (45). However, Holtz 
et al. (46) reported that CIITA promoter is silenced by epigenetic mechanisms rather than 
promoter methylation. Considering that trophoblasts invade decidua and directly encounter 
maternal immune cells, it is not surprising that induction of MHC class II Ag in trophoblasts 
leads to fetal rejection by maternal immune attack (47). Furthermore, maternal uterine 
immune cells exhibit decreased expression of MHC class II molecules during gestation. 
Seminal fluid primes uterine CD11c+ cells to tolerogenic phenotype, thereby reducing MHC 
class II Ag expression and inducing expansion of paternal Ag-specific Tregs (48). MHC class 
II-expressing uterine dendritic cells (DCs) are also sequestered within the decidua during 
pregnancy to prevent active Ag transport and presentation to maternal T cells (49). Moreover, 
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pregnancy-related hormones such as human chorionic gonadotrophin (hCG) and TGF-β1 
also reduce expression of MHC class II Ags and Ag presentation in uterine innate lymphoid 
cells. These results further demonstrate that MHC class II-dependent Ag presentation in the 
fetomaternal interface is highly suppressed (50).

In summary, the function of MHC class I and II molecules in the placenta is insufficient for 
alloantigen presentation. Consequently, defective Ag presentation systems in the placenta 
enable semi-allogeneic trophoblasts to invade maternal tissue effectively while safeguarding 
the fetus from potential cytotoxic responses by the maternal immune system.

NK cells
NK cells constitute the largest population of immune cells in the decidua, particularly during 
pregnancy, and play a critical role in remodeling and maintaining immune tolerance at 
maternal-fetal interface (51). While NK cells in peripheral tissues primarily exhibit cytotoxic 
functions, decidual NK cells (dNK cells) play a distinct role in immune suppression during 
gestation. The differentiation of dNK cells is tightly regulated to prevent tissue damage and 
promote remodeling of the spiral arteries, a process necessary for proper placental function 
(52). dNK cells are significantly distinct from peripheral NK cells (pNK cells) in their gene 
expression profiles and expression of immunosuppressive molecules such as KIR2DL4 
and NKG2 receptors (53,54). For example, CD56high CD27+ dNK cells express substantially 
higher levels of inhibitory receptors compared to their CD27+ pNK cell counterparts (53). In 
mouse models of dNK cell differentiation, transcription factor Eomes exhibited preferential 
activation over T-bet. T-bet is crucial to the maintenance of pNK cell numbers and functions 
but exerts minimal effects on morphology of dNK cells and spiral artery remodeling (55).

dNK cells also recognize MHC class I molecules expressed on EVTs via their inhibitory 
receptors. Interactions between these MHC class I molecules and inhibitory receptors on 
dNK cells suppress immune responses by signaling through classical and non-classical HLA 
molecules. The CD94/NKG2 complex expressed on dNK cells binds to HLA-G and HLA-E 
expressed on EVTs, inducing functional inhibition of dNK cells and preventing cell lysis 
mediated by NK cells (54,56). Additionally, dNK cells express the inhibitory surface receptor 
KIR2DL4, which, upon binding to HLA-G, recruits the protein tyrosine phosphatase SHP-1 
to immunoreceptor tyrosine-based inhibitory motifs, thereby inhibiting NK cell activation 
(57). ILT2, also known as leukocyte Ig-like receptor subfamily B member 1, is another 
HLA-G receptor expressed on the surface of dNK cells (58). ILT2 induces inhibitory signals 
upon engaging with HLA-G. Through the inhibitory receptors expressed on their surface, 
dNK cells prevent lysis of trophoblasts and suppress immune responses against the fetus. 
Genomic and epidemiological studies revealed that haplotype of maternal KIR and fetal 
HLA-C variants are associated with incidence of gestational complications such as pre-
eclampsia and birthweights (59,60). Furthermore, dNK cells exhibit an immunosuppressive 
function by regulating the differentiation of Th17 cells. CD27+ dNK cells release high levels 
of IFN-γ, which suppresses Th17 cell development and function during pregnancy (61). These 
multifaceted mechanisms employed by dNK cells collectively create an immune-privileged 
environment at the maternal-fetal interface, safeguarding the semi-allogeneic fetus from 
maternal immune attack.

Tregs
Tregs represent another key cellular mediator of maternal-fetal tolerance, expanding 
systemically and locally during gestation to suppress immune responses against semi-
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allogeneic fetus through diverse molecular mechanisms. Expansion of CD4+ CD25+ Tregs 
during pregnancy can be alloantigen-specific (13). Fetal Ag-specific maternal Foxp3+ CD4 
T cells are accumulated during pregnancy, persisted after parturition, and rapidly re-
accumulated upon secondary pregnancy with the same paternal background (62). Moreover, 
alloantigen-independent expansion of Tregs has also been reported in other contexts (63). 
Aluvihare et al. (63) demonstrated that the maternal CD25+ T cell pool, which possesses 
potent regulatory functions, expands systemically during gestation, and the depletion of 
these cells leads to immunological rejection of the fetus . These pregnancy-induced Tregs are 
found to be generated extrathymically (64). Conserved noncoding sequence 1 (CNS1) is an 
enhancer region of the Foxp3 gene essential for extrathymic Treg differentiation but not for 
thymus-derived Tregs. Samstein et al. (64) found that paternal alloantigen-specific Tregs are 
generated in a CNS1-dependent manner, further suggesting that pregnancy-induced Tregs 
arise extrathymically.

Tregs also express immune checkpoint molecules, including CTLA-4, PD-1, and lymphocyte 
activation gene 3 (LAG3), on their surface (65). The expression and signaling via these 
molecules enhance the regulatory functions of Tregs. Interaction with their ligands and 
signaling through CTLA-4 controls expression of CD80/86 by APCs, PD-1 enhances the 
suppressive capacity of Tregs, and LAG3 negatively regulates T cell function (66-71). Studies 
have found that the expression of these immune checkpoint molecules is increased in Tregs 
during pregnancy (72,73). Moreover, Tregs release a variety of cytokines that modulate 
immune cells at the maternal-fetal interface. For example, the immune-suppressive cytokines 
IL-10 and TGF-β from Tregs play a central role in promoting immune suppression in the 
placenta during pregnancy (74,75). These cytokines diminish effector phenotype of T cells, 
inhibit activation and maturation of APCs, and further induce differentiation of T cells and 
monocytes into immunosuppressive Tregs and M2 macrophages (76,77).

Without proper development of Tregs, the decidua undergoes histological changes, including 
necrosis and thrombosis, leading to implantation failure and fetal loss (64). Consistently, the 
amount of Tregs is lower in women who have experienced recurrent spontaneous abortions 
compared to fertile women (78). Geng et al. (79) also showed that sphingosine-1-phosphate 
receptor 1, an inhibitor of Treg differentiation, is upregulated in placental T cells from 
patients with recurrent pregnancy loss (RPL). In contrast, intrauterine infusion of autologous 
Tregs in RPL patients alleviated miscarriage rates (80). Collectively, these findings show the 
critical role of Tregs in protecting the fetus against allogeneic immune responses.

Immune checkpoint molecules
Recent success of cancer immunotherapy has highlighted the importance of the immune 
checkpoint signaling in controlling immunity. Understanding the precise molecular 
mechanism of these signaling pathways has become one of the most important research 
subjects. However, the critical role of immune checkpoint molecules in establishing immune-
suppressive environment at the maternal-fetal interface has been documented before the rise 
of cancer immunology (Fig. 2). For example, expression and regulation of immune checkpoint 
molecules such as CTLA-4, PD-1, and LAG3 have been reported in various T cells during 
pregnancy (72,74,81,82). Recent single-cell study provides an even more clear picture of 
this regulation. For instance, the expressions of checkpoint molecules such as PD-1, PD-L1, 
or TIGIT are identified among various immune cells and EVT, providing multiple layers of 
immune suppressive environment (83). Clinical evidence also supports the importance of 
immune checkpoint molecules that expression of PD-1 and population of PD-1+ immune 
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cells were significantly decreased in decidua of PE patients (84). In addition, patients 
with miscarriage exhibited lower levels of CTLA-4 expression in decidual and peripheral 
lymphocytes (85). Therefore, immune checkpoint molecules are also key factors in 
fetomaternal tolerance.

Glycosylation of molecules
There is also growing evidence that glycosylation, which is the most complex and diverse 
post-translational modification process, also contributes to immunological tolerance 
at maternal-fetal interface. First identified by Whyte and Loke, surface glycopeptides of 
trophoblasts are enriched with sialic acid and the authors postulated that sialylation may be 
associated with invasiveness of trophoblast itself (86). Later study confirmed that trophoblast 
subsets are differentially glycosylated as they exhibit different levels of invasiveness in 
placenta. Nonetheless, the most dominant form of sialylation in placenta was α2,3-linked 
terminal sialic acid, which is found at surface glycan arms of SCTs and cytotrophoblasts. 
Moreover, EVT only expressed α2,3-linked sialic acid residue in their N-glycans (87). Since 
then, many studies have focused on the biological role of sialylation during gestation.

Unexpectedly, lack of cell surface sialylation in trophoblast resulted in developmental failure 
by maternal immune attack. The immunologic rejection of sialic acid-deficient embryo 
was mainly mediated by maternal complement attack, which is rescued by exhaustion of 
complement factor C3 (88). Moreover, recent study by Rizzuto et al. (89) has shown that 
α2,6-linked sialic acid is also pivotal to the maintenance of immune tolerance. Heavily α2,6-
sialylated trophoblast-derived Ags are recognized by specific receptor CD22 in maternal B 
cells. This interaction activated CD22-LYN signaling to suppress fetal Ag-specific maternal B 
cells and CD4+ T cells (89). Apart from glycosylation in trophoblasts, glycodelin-A is another 
sialylated glycoprotein in placenta. Among sialic acid-binding receptors, sialic acid-binding 
Ig-like lectin 7 expressed by monocytes binds decidual glycodelin-A and induces polarization 
of monocytes to regulatory decidual macrophage-like phenotype (90). Taken together, these 
results suggest that the sialylation process in placenta establishes a tolerogenic environment 
for a developing fetus. Further studies will be required to identify the versatile role of 
placental glycobiology in pregnancy.
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Figure 2. Markers of Tregs and immunosuppressive effects of immune checkpoint molecules. Tregs express 
molecular markers and immune checkpoint molecules that play immunosuppressive roles at the maternal-
fetal interface. Additionally, IDO, expressed by DCs or EVTs, plays a crucial role in suppressing effector cells by 
catalyzing the conversion of tryptophan into kynurenine.



Other factors
Beyond cellular and molecular mechanisms of fetomaternal tolerance, metabolic 
pathways, and pregnancy-associated hormones also contribute critically to establishing 
an immunosuppressive milieu at the maternal-fetal interface, further highlighting the 
multifaceted nature of fetomaternal tolerance induction. One of the earliest studies 
highlighted the role of tryptophan metabolism at the maternal-fetal interface (Fig. 2). 
The enzyme indoleamine 2,3-dioxygenase (IDO), primarily produced by DCs, catalyzes 
the initial step of tryptophan metabolism by converting tryptophan to kynurenine (91). 
Kynurenine binding to the aryl hydrocarbon receptor on naive CD4+ T cells induces Foxp3 
expression, thereby generating Tregs (92,93). Inhibition of tryptophan metabolism during 
pregnancy leads to fetal rejection mediated by T cell activation (94). IDO expression in DCs 
also suppresses T cell proliferation at least in part by the depletion of tryptophan in the 
microenvironment (91). Additionally, IDO is also expressed in giant trophoblasts in mice 
and EVT and villous trophoblasts in humans (95-97). Other studies report the significance 
of pregnancy-associated hormones on the immune-suppressive functions of immune cells 
and trophoblasts. For example, progesterone induces the differentiation of naive T cells 
toward Tregs and suppresses the differentiation toward Th17 cells in cord blood, which is 
associated with the enhancement of STAT5 and suppression of STAT3 (98). This process is 
crucial as Th17 cells have been implicated in various obstetric complications, such as RPL and 
preeclampsia (99). Progesterone also stimulates the expression of HLA-C and HLA-G in EVTs 
through non-classical progesterone receptor membrane component 1-ELF3 axis (100). hCG 
is one of the first messenger molecules from embryo to maternal cells during the process of 
implantation. The role of hCG in the immune-suppression is reviewed elsewhere (101). Due 
to the difference between humans and mice, mechanistic studies are still largely lacking to 
identify the exact role of hCG in immune regulation during pregnancy.

IMPLICATIONS AND TRANSLATIONAL PERSPECTIVES 
BEYOND PREGNANCY
Insights into the mechanistic pathways of fetal-maternal immune tolerance hold the 
potential for improving clinical outcomes in gestational complications. However, there have 
been a limited number of translational applications. One study showed that Intrauterine 
infusion of autologous Tregs may improve live birth rates and reduce early miscarriage rates 
in patients with RPL, highlighting further investigation in larger clinical trials (80).

Furthermore, understanding the mechanism of fetal-maternal immune tolerance could 
benefit other areas of immunology where active tolerance to foreign entities is necessary, 
such as cancer and transplantation. Remarkably, there are striking parallels between 
pregnancy and cancer, as both trophoblasts and cancer cells invade host tissue, promote 
angiogenesis, and establish a tolerogenic microenvironment (Fig. 3). Trophoblasts 
constitutively express diverse matrix metalloproteinases (MMPs) and collagenases to 
facilitate invasion and anchoring within the decidua (102), mirroring the ability of cancer 
cells to invade and metastasize by exploiting similar invasive mechanisms (103). Moreover, 
trophoblasts and cancer cells actively induce angiogenesis by expressing VEGF and other 
angiogenic factors (104,105). A key aspect facilitating immune evasion is antigenic 
escape, whereby both trophoblasts and cancer cells downregulate classical MHC class I 
and Ag presentation machinery to circumvent host immune surveillance (106). Tregs and 
immune checkpoint molecules also contribute to immune tolerance and influence clinical 
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outcomes of pregnancy and cancer (79,80,84,85,107). Interestingly, the evolutionary 
adaptation of trophoblast invasiveness in mammals corresponds with an increased risk of 
cancer metastasis and gestational disorders (108,109). Given these similarities, elucidating 
the molecular parallels between pregnancy and cancer could reciprocally inform the 
development of therapeutic strategies in both contexts. The great success of immune 
checkpoint inhibitors in cancer therapy exemplifies how future translational impact of 
insights from pregnancy could advance immunotherapy development. Now, mAb targeting 
the inhibitory receptors on NK cells including lirilumab (anti-KIR mAb) and monalizumab 
(anti-NKG2A mAb) are currently under clinical investigation to test their efficacy in cancer 
immunotherapy (110). In addition, efforts have been made to target tryptophan metabolism 
for cancer therapy, as the tryptophan-catabolizing enzyme IDO1 is a key tolerogenic factor 
at the maternal-fetal interface as well as in the tumor microenvironment. Combinations of 
conventional cancer therapy and various IDO1 inhibitors have shown clear signs of efficacy 
in clinical trials (111). Finally, while MHC suppression mechanisms of trophoblast remain 
elusive, given the ongoing investigation into targeting MHC class I inhibitory pathways 
in cancer (106), these mechanisms could potentially serve as future clinical targets for 
enhancing anti-tumor immunity.

CONCLUSION

In conclusion, pregnancy represents an immunological paradox where the semi-allogeneic 
fetus is protected from maternal immune rejection through the active development of 
robust immune tolerance mechanisms. These multi-layered tolerance mechanisms include 
physical barriers like the placenta, restricted chemokine expression limiting leukocyte 
trafficking, lack of sufficient alloantigen presentation, the presence of immunosuppressive 
cells like Tregs and tolerogenic NK cells, expression of immune checkpoint inhibitors, 
specific glycosylation patterns conferring immune evasion, and unique metabolic/hormonal 
adaptations (Fig. 1). These cellular and molecular mechanisms are highly interconnected 
to each component, with one mechanism influencing and reinforcing others through 
complex regulatory networks in the uteroplacental milieu. Remarkably, many of these 
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Figure 3. Common molecular features shared between pregnancy and cancer. Both trophoblasts and cancer 
cells demonstrate invasiveness through the expression of MMPs and collagenases. Additionally, they secrete 
pro-angiogenic factors including VEGF to induce angiogenesis for proper growth of fetus and cancer. Finally, they 
evade host immunity by suppressing MHC expression and induce immune tolerance to safeguard their survival 
and proliferation within the host environment.



tolerance pathways mirror strategies employed by cancer cells to promote angiogenesis, 
tissue invasion, and immune evasion. Clinical studies from patients with gestational 
complications or cancer also retrospectively reveal the importance of immune tolerance in 
influencing pathophysiology, diagnosis, treatment, and clinical outcomes. Unfortunately, 
despite the rising clinical demand, translational applications of insights from maternal-fetal 
immune tolerance mechanisms have been extremely limited thus far. Therefore, further 
elucidating the novel mechanistic underpinnings of fetal-maternal immune tolerance holds 
significant translational potential not only for improving our understanding of gestational 
complications arising from dysregulated tolerance processes but also for developing novel 
cancer immunotherapies.
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