• 제목/요약/키워드: Materials property

검색결과 4,149건 처리시간 0.031초

세라믹튜브 및 패킹형플라스틱 여재충전 상향류식 혐기성여상에 의한 유가공 폐수처리 (Performances of Ceramic-tube and Pall-ring Upflow Anaerobic Filters Treating a Dairy Waste)

  • 허준무;장덕;배형석;김수영
    • 상하수도학회지
    • /
    • 제14권1호
    • /
    • pp.37-44
    • /
    • 2000
  • Laboratory experiments were conducted to investigate the performances of anaerobic filters packed with ceramic tube and pall-ring media treating a dairy waste. The media packing volume was 65% of effective volume of anaerobic filter. Organics removals of anaerobic filters were maintained above 80% even at an organics loading rate of $10kgCOD/m^3/d$, and this was comparable to aerobic treatment of organic wastes. Organics removals of the ceramic tube anaerobic filters were always lower than those of the pall-ring anaerobic filters due to intrinsic physical property of ceramic tube, especially lower void space which caused to clogging and entrapment of biogas, substrate transfer limitation, and irregular evolution of biogas leading to loss of solids and biomass. This was clearly observed in higher concentration of TSS in the effluent from the ceramic tube anaerobic filter despite of higher retention capacity of TSS compared with pall-ring media. Vertical distribution of organics and solids in the filters showed above 90% of organics and solids in influent were removed below 20% of reactor height, and 50% of remaining organics and solids were removed though media packing zone. Effluent quality from the anaerobic filter was heavily depended on media itself as well as suspended biomass formed below media. It is therefore concluded that the type of media played an important role in biomass accumulation arid gas-liquid-solid separation efficiency. Type of media did not affect the start-up behaviors of the anaerobic filter, and supernatant from anaerobic digested sludge showed a good performance as a seeding materials.

  • PDF

Microstructural, Mechanical, and Durability Related Similarities in Concretes Based on OPC and Alkali-Activated Slag Binders

  • Vance, Kirk;Aguayo, Matthew;Dakhane, Akash;Ravikumar, Deepak;Jain, Jitendra;Neithalath, Narayanan
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권4호
    • /
    • pp.289-299
    • /
    • 2014
  • Alkali-activated slag concretes are being extensively researched because of its potential sustainability-related benefits. For such concretes to be implemented in large scale concrete applications such as infrastructural and building elements, it is essential to understand its early and long-term performance characteristics vis-a'-vis conventional ordinary portland cement (OPC) based concretes. This paper presents a comprehensive study of the property and performance features including early-age isothermal calorimetric response, compressive strength development with time, microstructural features such as the pore volume and representative pore size, and accelerated chloride transport resistance of OPC and alkali-activated binder systems. Slag mixtures activated using sodium silicate solution ($SiO_2$-to-$Na_2O$ ratio or $M_s$ of 1-2) to provide a total alkalinity of 0.05 ($Na_2O$-to-binder ratio) are compared with OPC mixtures with and without partial cement replacement with Class F fly ash (20 % by mass) or silica fume (6 % by mass). Major similarities are noted between these binder systems for: (1) calorimetric response with respect to the presence of features even though the locations and peaks vary based on $M_s$, (2) compressive strength and its development, (3) total porosity and pore size, and (4) rapid chloride permeability and non-steady state migration coefficients. Moreover, electrical impedance based circuit models are used to bring out the microstructural features (resistance of the connected pores, and capacitances of the solid phase and pore-solid interface) that are similar in conventional OPC and alkali-activated slag concretes. This study thus demonstrates that performance-equivalent alkali-activated slag systems that are more sustainable from energy and environmental standpoints can be proportioned.

결정화 유리에 관한 연구 저 Li$_2$O 유리에 관하여 (Studies on the Crystallizing Glass on Low Li$_2$ O Glass)

  • 박용완;이종근;고영신;김정은
    • 한국세라믹학회지
    • /
    • 제13권1호
    • /
    • pp.30-34
    • /
    • 1976
  • In general the chemical composition of glass ceramics in Li2O-Al2O3-SiO2 system is similar to the composition of $\beta$-spodumene (Li2O-Al2O3-4SiO2). With the object to manufacture the glass ceramics which can be produced in the domestic pot the composition of glass was so settled at 1.0 Li2O.0.9Al2O3.6.0SiO2 in order to reduce the contents of Li2O, to prevent the corrosion of the pot and to decrease the cost of raw materials. 0.2 mole and 0.1 mole of the mixture of TiO2 and ZrO2 as nucleants were added to the basic composition of 1.0 Li2O-0.9Al2O3-6.0SiO2. Each sample was divided into two kinds with a TiO2/ZrO2 ratio of 2 to 1 and the other with a TiO2/ZrO2 ratio fo 1 to 1. Thermal expansion coefficient, the most important property of glass ceramics, was tested. The softening point and the melting point of the samples were observed by the use of a heating microscope. The results obtained were as follows. The manufacturing of glass ceramics seems to be possible in the industrial plant using the domestic pot. 1) The composition of the glass which can be melted in the domestic pot process was near 1.0 Li2O.0.9Al2O3.6.0SiO2. 2) The temperature range of crystal creation and crystal growth was between 850-94$0^{\circ}C$, and 5 hours holding the samples at the temperature range was enough to crystallize them. The major crystal was $\beta$-spdumene and there existed petalite partialy. 3) The thermal expansion coefficient fo the crystallized glass was negative. 4) The deforming point of the crystallized glass was 1435$^{\circ}C$.

  • PDF

금속의 두께가 도재의 파절강도에 미치는 영향 (A study on the difference of Ceramic fracture strength according to the metal depth)

  • 신무학;최운재;김용원
    • 대한치과기공학회지
    • /
    • 제27권1호
    • /
    • pp.89-95
    • /
    • 2005
  • In the manufacture of ceramo-metal crown, difference of fracture strength according to the metal depth has been known to be an important influence on enough intensity and internal stress to endure an occlusion-pressure as well as aesthetics of rehabilitating similar colour such as natural teeth. Depth of ceramic material could be determined by that of metal in three groups: first case of thin depth, second case of thick depth, and third case of constant depth. For the enhancement of the fracture strength between metal and ceramic materials and aesthetic satisfaction, a study on the bonding force, fracture strength, and aesthetics have been required more. In this study, therefore metal coping were made in three groups of A, B and C by using both ceramic powder of Norithe and metal of Columbium, which have been used primarily in the market. A group was made in $0.2mm\times10mm\times10mm$, B group was made in $0.4mm\times10mm\times10mm$, and, C group was made in $0.8mm\times10mm\times10mm$, respectively. The number of metal coping in each group was 10, and total sample numbers used in this study were 30 metal copings. After these metal coping tissue were in the process of build-up in 1.5mm constant depth of porcelain, firing, and glazing, the fracture strength about each metal coping tissue was investigated using oil press. It was found that the average values of durable occlusion pressure for separation of ceramic material in the porcelain fused to metal crown (PFM) in the each group showed the increasing order of A group (30 bar), B group (42 bar), and C group (44 bar), respectively. Proper depth of metal coping in the PFM was considered to be 0.4mm in the B group because this metal size showed higher durable property to the occlusion pressure and better coupling strength in the ceramo-metal crown.

  • PDF

도재소부용 18K 금합금의 미량원소의 첨가에 따른 물리적 성질의 변화에 관한 연구 (A Study on Change of Physical Property in Porcelain Fused to 18K Gold Alloy by Small Additional Elements)

  • 이기대
    • 대한치과기공학회지
    • /
    • 제30권2호
    • /
    • pp.31-37
    • /
    • 2008
  • A variety of the porcelain fused to gold(PFG) have been developed to which porcelain can be fused. PFG alloys developed for this purposed have a high melting point and do not discolor when combined with porcelain. The design of the compositions of PFG is very important to esthetic restorative materials applying to porcelain. The purpose of this study is on the change of physical and mechanical characteristics in PFG 18K alloy by the small additional elements. Principal results are as follows. The high Au alloy containing 18Karat gold contents is respectively Au(75%), Pd(10%), Pt(4%), Ag(4%), In(2%), Sn(2%), Cu(2%), Ti(1%). These alloys are composed mainly of gold, platinum, silver and palladium with a few percent of the additional elements. By the addition of small amounts of elements such as In, Sn, Ti, the fine grain castings are produced in gold alloy and the small addition of platinum is very effective in increasing of hardness and strength. These gold alloys are representative of the changes to be expected as a result of heat treatment. These changes in strength and hardness values are sufficient to demonstrate a significant difference in performance between a as-casted and a heat-treated. These alloys have mechanical properties characteristics of Type and Type gold alloys. These alloys are useful to porcelain-metal restorations and dental laboratory. Also the porcelain fused to metal(PFM) alloys containing gold are commonly use for dental purposes in dental laboratory.

  • PDF

알칼리 수전해용 전극에 관한 연구 (Study on the Electrode Characteristics for the Alkaline Water Electrolysis)

  • 최호상;임두순;유철휘;김재철;황갑진
    • 한국수소및신에너지학회논문집
    • /
    • 제23권2호
    • /
    • pp.117-124
    • /
    • 2012
  • Alkaline electrolysis needs the electrode having a low overvoltage and good corrosion resistance in alkaline solution such as KOH and NaOH, for the oxygen and hydrogen production. The commercial materials such as SUS(stainless steel)-316, Ni and NiFe were evaluated for the electrode in alkaline electrolysis. The test solution for the alkaline electrolysis used 1~9M NaOH and 1~9M KOH. The voltage increased with an increase of current density in each solution. As for the 15wt.% (about 5M) NaOH, the voltage of the tested electrode under the current density of 1.8A/$cm^2$ showed the almost same value. The voltage over the current density of 1.8A/$cm^2$ deceased in the order: Ni${\fallingdotseq}$NiFe$cm^2$ showed the almost same value. The voltage over the current density of 1.8A/$cm^2$ deceased in the order: NiFe${\fallingdotseq}$SUS-316. From the results, it was estimated that NiFe and Ni was suitable as the electrode for the alkaline water electrolysis using NaOH and KOH electrolyte.

A Study on Improvement and Degradation of Si/SiO2 Interface Property for Gate Oxide with TiN Metal Gate

  • Lee, Byung-Hyun;Kim, Yong-Il;Kim, Bong-Soo;Woo, Dong-Soo;Park, Yong-Jik;Park, Dong-Gun;Lee, Si-Hyung;Rho, Yong-Han
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권1호
    • /
    • pp.6-11
    • /
    • 2008
  • In this study, we investigated effects of hydrogen annealing (HA) and plasma nitridation (PN) applied in order to improve $Si/SiO_2$ interface characteristics of TiN metal gate. In result, HA and PN showed a positive effect decreasing number of interface state $(N_{it})$ respectively. After FN stress for verifying reliability, however, we identified rapid increase of $N_{it}$ for TiN gate with HA, which is attributed to hydrogen related to a change of $Si/SiO_2$ interface characteristic. In contrast to HA, PN showed an improved Nit and gate oxide leakage characteristic due to several possible effects, such as blocking of Chlorine (Cl) diffusion and prevention of thermal reaction between TiN and $SiO_2$.

Enhancement of antimicrobial properties of shoe lining leather using chitosan in leather finishing

  • Mahmud, Yead;Uddin, Nizam;Acter, Thamina;Uddin, Md. Minhaz;Chowdhury, A.M. Sarwaruddin;Bari, Md. Latiful;Mustafa, Ahmad Ismail;Shamsuddin, Sayed Md.
    • Advances in materials Research
    • /
    • 제9권3호
    • /
    • pp.233-250
    • /
    • 2020
  • In this study, a chitosan based coating method was developed and applied on the shoe lining leather surface for evaluating its inhibition to bacterial and fungal attacks. At first, chitosan was prepared from raw prawn shells and then the prepared chitosan solution was applied onto the leather surface. Secondly, the characterization of the prepared chitosan and chitosan treated leather was performed by solubility test, ATR-FTIR, XRD pattern, SEM and TGA. Evaluation of antimicrobial efficacy of chitosan was assessed against two gram positive, two gram negative bacteria and a reputed fungi by agar diffusion test. The results of this study demonstrated that chitosan took place in both the surface of collagen fibres and inside the collagen matrix of crust leather. The chitosan showed strong antimicrobial activities against all the tested microorganisms and the inhibition increased with increasing percentage of chitosan. Therefore, the prepared chitosan in this study can be an environment friendly biocide, which functions simultaneously against different spoilage bacteria and fungi on the finished leather surface. Thus by using the prepared chitosan in shoe lining leather, the possibility of microbial attack during shoe wearing can be minimized which is one of the important hygienic requirements of footwear.

다기능성 구조전지용 탄소섬유직물의 전해질 코팅이 기계적 성능에 미치는 효과 (The Effect of Electrolyte-coating on the Mechanical Performance of Carbon Fabric for Multifunctional Structural Batteries)

  • 박현욱;박미영;김천곤;김수현
    • Composites Research
    • /
    • 제28권5호
    • /
    • pp.285-290
    • /
    • 2015
  • 구조전지에서 멀티스케일로 일어나는 다중물리현상은 기계적 물성을 테스트하는 것을 어렵게 한다. 본 연구에서는 구조전지 셀에 적합한 기계적 물성 테스트 방법을 이용하여 탄소섬유직물의 전해질 코팅이 기계적 성능에 미치는 효과를 알아보았다. 이를 위해 ASTM의 표준 시편 규격을 참고하여 2가지 종류의 시편을 제작하였다. 기계적 물성 실험은 탄소섬유직물에 전해질을 도포하여 전해질 코팅을 수행하고 이를 다시 에폭시에 경화를 시켜 시편을 만들고 만능 인장시험기를 이용하여 인장실험을 진행하였다. 실험결과, 탄소섬유직물에 전해질의 코팅이 기계적물성에는 큰 영향을 주지 않음을 확인할 수 있었다. 또한 실험에 이용한 축소된 규격의 시편이 타당함을 확인할 수 있었다.

볼트로 겹침이음된 펄트루젼 복합재 접합부의 구조적 거동 (Structural Behavior of Bolted Lap-Joint Connection in the Pultruded FRP Structural Members)

  • 이영근;신광열;주형중;남정훈;윤순종
    • Composites Research
    • /
    • 제23권1호
    • /
    • pp.37-43
    • /
    • 2010
  • 이 연구에서는 볼트로 겹침이음된 펄트루젼 복합재의 접합부에 대한 구조적 거동을 실험적 연구를 통해 조사하였다. 펄트루젼 복합재 접합부의 구조적 거동 조사에 앞서 재료의 역학적 성질을 파악하기 위해 펄트루젼 복합재의 인장 및 전단실험을 수행하였고, 이를 바탕으로 볼트의 수와 배열을 변수로 3종류의 겹침이음 시편을 제작하였다. 겹침이음 접합부 실험은 접합부를 중심으로 인장하중이 작용하도록 하중을 재하하였고, 하중증가에 따른 접합부의 구조적 거동 및 파괴모드를 조사하였다. 실험결과 접합부에 대한 파괴는 대부분 전단파괴로 나타났으며, 실험을 통해 얻어진 데이터를 분석하여 설계를 위한 기초자료로 활용될 수 있도록 하였다.