• Title/Summary/Keyword: Materials property

Search Result 4,161, Processing Time 0.033 seconds

Preparation and Electrical Properties of Carbon Paper Using Chopped Carbon Fiber (탄소 단섬유를 이용한 탄소종이 제조 및 전기전도도 특성)

  • Lee, Ji-Han;Yoo, Yoon-Jong;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.121-125
    • /
    • 2013
  • In this work, we prepared the carbon paper from chopped carbon fibers using a gas diffusion matrix in polymer electrolyte membrane fuel cells by wet processing. The process of making carbon paper using wet processing is consisted of the three steps involving the dispersion of chopped carbon fibers, the preparation of the carbon fiber web, the impregnating of phenol resin. This work was focused on finding the optimal surfactant to make the carbon paper with 2D orientation of carbon fibers by investigating the dispersion state of carbon fibers in different dispersion solutions. Furthermore, the effect of phenol resin and carbon black contents on properties of electric conductivity was analyzed. As a result, it is confirmed that the carbon fiber was well dispersed when using sodium dodecyl sulfate as a surfactant, and the carbon paper with 8 wt% of phenol and 5 wt% of carbon black contents showed the most excellent electrical property.

Measurements of Thermal Diffusivity of Heavy Rolled Low Carbon Steel Plate With Laser Flash Technique (레이저 섬광법에 의한 압연된 저탄소강 판재의 열확산계수 측정)

  • 배신철;임동주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.157-171
    • /
    • 1990
  • The heat transfer problem associated with pulse technique for measuring thermal diffusivity was solved by means of Green function. The obtained general solution was discussed so as to apply for all possible cases; kinds of boundary condition and heat source, irradiation positions of heat pulse, radius of heat pulse, one-and two-dimensional heat flow, finite pulse time effects and radiation heat loss systems. Experimentally, the laser flash lamp was used as heat source for measuring thermal diffusivity of low carbon, aluminium chilled steel plate, which was heavily rolled in order to measure the variation of thermal diffusivity in the temperature range from room temperature through 500.deg. C. The derived results are (1) materials produced from same furnace showed a somewhat different thermal diffusivity values. (2) the thermal diffusivity value of rolled material was smaller than unrolled material and the difference decreased as increasing temperature. (3) the thermal diffusivity value of an annealed and temper rolled material was larger than the value of a cold rolled material, even thought smaller than unrolled material. (4) In case of heavy rolled material, there was no consistent relationships between the thermal diffusivity and the reduction in thickness.

Infrared Signature Analysis on a Flat Plate by Using the Spectral BRDF Data (파장별 BRDF 데이터를 이용한 평판의 적외선 복사휘도 특성 분석)

  • Choi, Jun-Hyuk;Kim, Dong-Geon;Kim, Jung-Ho;Kim, Tae-Kuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.577-585
    • /
    • 2010
  • This paper is a part of developing a software that predicts the infrared signal emitted from a ground object by considering solar irradiation. The radiance emitted from a surface can be calculated by using the temperature and optical characteristics of the surface object. The bidirectional reflectance distribution function (BRDF) is defined as the ratio of reflected radiance to incident irradiance. It is a very important surface reflection property that decides the reflected radiance from the object. In this paper, the spectral radiance received by a remote sensor over the mid-wave infrared(MWIR), and the long-wave infrared(LWIR) regions are computed and compared each other for several different materials. The results show that the optical surface properties such as the BRDF and the emissivity of the object surface can play a major role in generating the infrared signatures of various objects, and the largest infrared signal may reach up to 10 times the smallest one when the infrared signals obtained from a flat plate with different surface conditions under the sun light.

Physical Properties and Virtual Cloth Images of Cotton Fabrics Treated with Chitosan, 1,2,3,4-Butanetetracarboxylic Acid and Citric Acid (키토산과 1,2,3,4-Butanetetracarboxylic Acid, Citric Acid로 가공된 면직물의 역학적 특성과 가상 봉제 이미지)

  • Kim, Kyung-Sun;Jeon, Dong-Won;Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.13 no.1
    • /
    • pp.102-114
    • /
    • 2009
  • Chitosan is a polysaccharide with cationic amino groups in its structure and has useful properties as functional materials. Various end-use developments of chitosan are in progress. When the cotton fabric is pretreated with chitosan, the hand property of cotton fabric may be improved expecially for the summer apparel. In this study, as a cross-linking agent to introduce chitosan into cotton, BTCA(butane-1,2,3,4-tetracarboxylic acid) or CA(citric acid) was added in order to prevent detachment of chitosan by the cross-linking. During the cross-linking procedure, via the padding-drying-heat setting, amino groups of chitosan and hydroxyl groups of cotton, carboxyl groups of BTCA/CA are cross-linked by forming anhydrous cyclic rings. Since BTCA has four carboxyl groups, cross-linking by thermal treatment is easy, leading to the trials in wrinkle-recovery treatment of cotton fabrics. However, the high price of the BTCA reagent has been a shortcoming in the actual application for industrial use. Therefore, in this study, we tried the application of CA having three carboxyl groups, which is relatively low priced, as the substituting cross-linking agent. The hand of the treated fabrics were evaluated by measuring physical properties. In addition, based on the physical properties, three-dimensional images were introduced by using 3D CAD systems and results were compared.

Evaluation of Structural Stability of Fire Resistant Steel Produced by Thermo-Mechanical Control Process at High Temperature (TMCP 내화강재의 고온 내력 평가 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.21-25
    • /
    • 2013
  • Fire resistance steel, grading 490 MPa, had developed by using Thermo-mechanical control process (TMCP) and it has better performance at welding, seismic resistance than those of the ordinary structural steel, But the fire resistance performance is required to verify against the ordinary fire resistance, FR 490. Therefore this study was done to make database of mechanical properties at high temperature and to evaluate the structural stability at high temperature in terms of materials and structural member such as H-section from that of FR 490. The result of this study was that the structural stability of TMCP was lower than that of ordinary FR 490 at the range up about $700^{\circ}C$.

Effect of Neonicochid Type Wood Preservative on Adhesive Properties of Resorcinol Resin for Lminated Wood (네오니코치드계 목재보존제가 집성재 제조용 레조르시놀 수지의 접착력에 미치는 영향)

  • Lee, Dong Heub;Lee, Jong Shin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.34-40
    • /
    • 2014
  • The effect of neonicochid type wood preservatives on adhesive properties of resorcinol-formaldehyde resin for laminated wood manufacture was examined. By the previous studies, it was verified that the neonicochid type preservative has a high termite-proofing and anti-mold effectiveness. Commercial ACQ (ammoniacal copper quaternary compounds) and CUAZ (copper azol compounds) were used as comparison preservatives of effects on adhesive properties. The wood specimens used japanese red pine (Pinus densifrora) after application with preservatives and then bonded with resorcinol-formaldehyde resin. Adhesive properties were evaluated by shearing strength of adhesive bond and wood failure to dry condition or after accelerated aging test. Of all laminated woods, the wood specimens spread with ACQ or CUAZ showed the lowest shearing strength of adhesive bond. We estimated that the decrease of shearing strength was caused by copper in the ACQ or CUAZ preservatives. On the application of the neonicochid type preservatives, the wood specimens showed the highest shearing strength even after accelerated aging test. From these results, it is concluded that the copper-free neonicochid type preservative not affected the curing of resorcinol-formaldehyde resin.

The Physical Properties of UV-curable Resin for the Restoration of Glass Cultural Properties and Its Application in Conservation Treatment (유리제 문화재 복원용 광경화성 수지의 물성 연구 및 적용)

  • Lee, Hae Soon;Na, Ah Young
    • Conservation Science in Museum
    • /
    • v.21
    • /
    • pp.1-16
    • /
    • 2019
  • This study investigated the material properties of UV-curable Resin in order to identify stable materials for use in the restoration of glass cultural properties. Tested samples were based on acrylic UV-curable Resin (SECURE CP-7321®), to which urethane UV-curable Resin (FLGPCL04 Clear®) was added in 10% increments to produce eleven samples. The results showed that all eleven samples had similar properties in terms of refractive index, density, adhesive strength, and anti-yellowing. But the surface hardness and compressive strength were optimal and effective for maintaining the shape of artifacts after restoration treatment when the proportion of urethane resin was in the range of 10-20%. Based on these findings, the mixing sample [acrylic UV-curable Resin(9) : urethane UV-curable Resin(1)] was applied in the conservation treatment of a glass cultural propertie (Hwangbuk 519) excavated from the North Mound of Hwangnamdaechong, Tomb in Gyeongju.

Conservation Properties of Chalk Added Functional Lining Papers (기능성 배접지의 보존 특성 분석 -호분지-)

  • Choi, Kyoung-Hwa;Park, Ji-Hee;Seo, Jin-Ho
    • 보존과학연구
    • /
    • s.31
    • /
    • pp.79-88
    • /
    • 2010
  • Paper cultural heritages experience chemical and physical deterioration due to various factors including preservation environments and the property of paper materials1). Thus, it is important to develop optimal preservation and restoration methods for the damaged paper cultural heritages. Currently, lining is a popular treatment for the restoration of paper cultural heritages in Korea. Since lining paper is a layer of paper directly attached to the inside of cultural heritages for protection, understanding of the preservation properties of lining paper is primarily needed in order to devise the better preservation methods. The main material of lining paper is the paper mulberry, but additives such as chalk and white clay is sometimes used to enhance the preservation properties of lining paper. To date, the properties of the functional lining paper containing these additives have been not fully understood yet. In this study, dry heating aging at $105^{\circ}C$ and biological aging by the Aspergillus versicolor and Penicillium polonicum for the lining paper, which is made from paper mulberry and the chalk, are carried out to evaluate changes in their preservation properties by these aging factors. As a result, it is found that the functional lining paper containing 25.1% of chalk can control the growth of fungi, while the paper containing 32.7% of chalk do not show any protection effect. However, the functional lining paper added by chalk is more aged than the lining paper made from paper mulberry by dry heating accelerated aging.

  • PDF

Charge-Carrier Transport Properties and Fluorescence Behaviors Depending on Charge Transport Complex of Organic Photoconductor Containing Liquid Crystal (액정을 함유하는 유기 광도점체의 전하 수송착체에 의한 Charge-Carrier수송 특성과 형광거동)

  • Lee, Bong; Jung, Sung-Young;Moon, Doo-Dyung
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.719-727
    • /
    • 2001
  • Recently it was found that the charge carrier transport properties are significantly enhanced due to effective intermolecular $\pi$-orbital overlapping and low disorder of hopping sites caused by self-organization of liquid crystal molecules. In this study, the xerographic properties of a double-layer photoconductor doped with nematic liquid crystal, 4-pentyl-4'-cyanoterphenyl (5CT), as a charge-carrier transport material to enhance the charge-tarrier mobility were investigated. From the results of measured surface voltage properties for the photoconductor doped with various concentrations of liquid crystal, 5CT, the initial voltage was found to increase with the concentration of 5CT and the dark decay decreased with the concentration of 5CT. The highest sensitivity was obtained at a specific concentration, 40wt% 5CT. The fluorescence behavior of the carrier transport layer (CTL) was also investigated. It was found that the charge-carrier transport properties of the organic photoconductor depend on the charge-carrier transport properties of the complex. The TNF : 5CT (40 wt%) and OXD : 5CT (40 wt%)samples showed the highest sensitivity because the greatest charge transport complex was termed between the charge-carrier transport materials in these samples.

  • PDF

The Synthesis of Diphenyl ethanolamidophosphate (DPEAP) and the Flame Retardancy of Cotton Fabric (Diphenyl ethanolamidophosphate의 합성과 면섬유에 대한 방염성)

  • Huh, Man Woo;Yoon, Jong Ho;Cho, Yong Suk;Kim, Young Suk;Lim, Hak Sang
    • Textile Coloration and Finishing
    • /
    • v.8 no.2
    • /
    • pp.25-34
    • /
    • 1996
  • Diphenyl ethanolamidophosphate(DPEAD) was synthesized for the purpose of developing a new flame retardant for cotton fabric. As the intermediate material was used diphenyl chlorophosphate(DPCP) and it was synthesized by using phosphorus oxychloride and phenol as the starting materials. The final product DPEAP was obtained by the reaction of DPCP and ethanolamine. The flame retardancy of cotton fabrics treated by DPEAP through pad-dry-cure(PDC) process was examined at various conditions. The physical property change of the DPEAP treated cotton fabrics were investigated by examining the drape stiffness, the wrinkle recovery, and the tensile strength. The results are summarized as follows: (1) DPEAP has shown excellent flame retardancy on cotton fabrics in comparison to other flame retardants for cotton fabrics available commercially. (2) The optimal condition for PDC process found was that the curing temperature was 16$0^{\circ}C$, the DPEAP concentration was 10%, the catalyst $({NH_{4})_{2}HPO_{4}$ concentration was 7.0%, and the fixing agent hexamethylol melamine (HMM)/DPEAP weight ratio was 1/8. (3) The wrinkle recovery of the processed fabrics increased with increasing DPEAP concentration. (4) The drape stiffness of the cotton fabrics treated by DPEAP have shown essentially no change until increasing DPEAP concentration to 15 %, however DPEAP concentration exceeds 20% the drape stiffness increased drastically with increasing DPEAP concentration. When DPEAP concentration is kept constant the drape stiffness increased with increasing $({NH_{4})_{2}HPO_{4}$ concentration and HMM/DPEAP weight ratio. (5) The tensile strength of the processed fabrics was lower than that of untreated fabrics, but the tensile strength retention increased with increasing DPEAP concentration.

  • PDF