DOI QR코드

DOI QR Code

Evaluation of Structural Stability of Fire Resistant Steel Produced by Thermo-Mechanical Control Process at High Temperature

TMCP 내화강재의 고온 내력 평가 연구

  • Kwon, In-Kyu (Department of Fire Protection Engineering, Kangwon National University)
  • Received : 2013.09.20
  • Accepted : 2013.12.06
  • Published : 2013.12.31

Abstract

Fire resistance steel, grading 490 MPa, had developed by using Thermo-mechanical control process (TMCP) and it has better performance at welding, seismic resistance than those of the ordinary structural steel, But the fire resistance performance is required to verify against the ordinary fire resistance, FR 490. Therefore this study was done to make database of mechanical properties at high temperature and to evaluate the structural stability at high temperature in terms of materials and structural member such as H-section from that of FR 490. The result of this study was that the structural stability of TMCP was lower than that of ordinary FR 490 at the range up about $700^{\circ}C$.

대형화, 초고층 및 고스팬에 부응하기 위한 강재 기술개발의 노력으로 용접성능과 내진성능 그리고 내화성능이 부여된 새로운 강재인 Thermo-mechanical control process (TMCP) 내화강재가 개발되었다. TMCP 내화강재는 기존의 내화강재 생산과정 시 압연과 동시에 정밀한 열처리를 병행함으로 인장력과 용접성을 향상시킬 수 있는 새로운 기술인 TMCP 방법으로 개발되었으며, 화재와 같은 고온에서의 구조적 안전성에 관한 내력평가가 요구되었다. 따라서 본 연구에서는 고온 시 TMCP 내화강재의 내력평가를 목적으로 고온 시 항복강도, 탄성계수를 평가하고 각각에 대한 온도영역별 실험식을 제시하였으며, 이를 일반 내화강재의 고온 특성과 비교, 분석하였다. 또한 각각의 소재로 설정된 H형강 기둥부재를 대상으로 고온 시의 내력을 계산하여 그 안전성을 확인한 결과, TMCP 내화강재의 고온 시 내력특성은 일반강 내화강재의 고온 내력저하 특성보다 열위인 것으로 나타났다.

Keywords

References

  1. I. K. Kwon, "Building Fire Protection", Donghwa Technology Publishing Co., Kyungido, Korea (2007).
  2. S. H. Lee, H. Y. Kim and B. Y. Min, "Development of Fire Engineering Technique", KICT 2002, Korea Institute of Construction Technology (2002).
  3. A. H. Buchanan, "Structural Design for Fre Safety", Chichester, UK (2001).
  4. G. S. Jung, "Building Materials", Kwangmoon, Seoul, Korea (1999).
  5. C. R. Kayser, J. A. Swanson and D. G. Linzell, "Characterization of Material Properties of HPS-485W (70W) TMCP for Brdge Girder Applications", Journal of Bridge Engineering, Vol. 11, No. 1, pp. 99-108 (2006). https://doi.org/10.1061/(ASCE)1084-0702(2006)11:1(99)
  6. S. H. Wang, C. C. Chiang and S. L. I. Chan, "Effect of Initial Microstructure on the Creep behavior of TMCP EH 36 and SM 490C Steels", Materials Science and Engineering, Vol. 344, No. 1-2, pp. 288-295 (2003). https://doi.org/10.1016/S0921-5093(02)00425-2
  7. L. Zhuang, "Effect of Thermo-mechanical Controlled Processing on Mechanical Properties of 490 MPa Grade Low Carbon Cold Heading Steel", Journal of Iron and Steel Research, International, Vol. 16, No. 3, pp. 43-48 (2009).
  8. D. Porter, A. Laukkanen, P. Nevasmaa, K. Rahka and K. Wallin, "Performance of TMCP Steel with Respect to Mechanical Properties after Cold Forming and Postforming Heat Treatment", International Journal of Pressure and Piping, Vol. 81, No. 10-11, pp. 867-877 (2004). https://doi.org/10.1016/j.ijpvp.2004.07.006
  9. Y. Nie, C. H. Shang, Y. You, X. C. Li, J. P. Cao and X. I. He, "960 MPa Grade High Performance Weldable Structural Steel Plate Processed by Using TMCP", Journal of Iron and Steel Research, International, Vol. 17, No. 2, pp. 63-66 (2010).
  10. CEN, Eurocode 3: "Design of Steel Structures, Part1. 2: General Rules-structural Fire Design", Brussel, Belgium (1995).